×

zbMATH — the first resource for mathematics

Infinite matrices and invariant means. (English) Zbl 0255.40003

MSC:
40C05 Matrix methods for summability
40D05 General theorems on summability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. · Zbl 0084.10402
[2] C. Eizen and G. Laush, Infinite matrices and almost convergence, Math. Japon 14 (1969), 137 – 143. · Zbl 0195.06702
[3] G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. · Zbl 0032.05801
[4] J. P. King, Almost summable sequences, Proc. Amer. Math. Soc. 17 (1966), 1219 – 1225. · Zbl 0151.05701
[5] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167 – 190. · Zbl 0031.29501 · doi:10.1007/BF02393648 · doi.org
[6] Ralph A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81 – 94. · Zbl 0125.03201
[7] Paul Schaefer, Matrix transformations of almost convergent sequences, Math. Z. 112 (1969), 321 – 325. · Zbl 0181.33501 · doi:10.1007/BF01110226 · doi.org
[8] Albert Wilansky, Functional analysis, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964. · Zbl 0229.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.