×

zbMATH — the first resource for mathematics

Inclusion mappings between \(l^p\) spaces. (English) Zbl 0255.47033

MSC:
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
40H05 Functional analytic methods in summability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] \scG. Bennett and N. J. Kalton, Inclusion theorems for K-spaces, Can. J. Math., to appear. · Zbl 0231.46026
[2] Dunford, N; Schwartz, J.T, Linear operators, I, (1958), Interscience New York
[3] Kaczmarz, S; Steinhaus, H, Theorie der orthogonalreihen, Monografje matematyczne, (1935), Warsaw · JFM 61.1119.05
[4] Kwapien, S, Some remarks on (p, q)-absolutely summing operators in lp spaces, Studia math., 29, 327-337, (1968) · Zbl 0182.17001
[5] Lindenstrauss, J; Pelczynski, A, Absolutely summing operators in \(L\)_p-spaces and their applications, Studia math., 29, 275-326, (1968) · Zbl 0183.40501
[6] Littlewood, J.E, On bounded bilinear forms in an infinite number of variables, Quart. jour. math., 1, 164-174, (1930) · JFM 56.0335.01
[7] Mitiagin, B.S; Pelczynski, A, Nuclear operators and approximative dimension, () · Zbl 0191.41704
[8] Orlicz, W, Über unbedingte konvergenz in funktionenräumen, II, Studia math., 4, 41-47, (1933) · Zbl 0008.31502
[9] Pelczynski, A, Projections in certain Banach spaces, Studia math., 19, 209-228, (1960) · Zbl 0104.08503
[10] Pelczynski, A, Problem 8, (), 471
[11] Pelczynski, A; Szelnk, W, Sur l’injection naturelle de l’espace l dans l’espace lp, (), 313-323 · Zbl 0132.09001
[12] Pietsch, A, Absolut summierende abbildungen in lokalkonvexen Räumen, Math. nachr., 27, 77-104, (1963) · Zbl 0114.31404
[13] Pietsch, A, Absolut p-summierende abbildungen in normierten Räumen, Studia math., 28, 333-353, (1967) · Zbl 0156.37903
[14] Sargent, W.L.C, Some sequence spaces related to the lp spaces, J. lond. math. soc., 35, 161-171, (1960) · Zbl 0090.03703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.