×

zbMATH — the first resource for mathematics

Convex matrix functions. (English) Zbl 0257.15004

MSC:
15B57 Hermitian, skew-Hermitian, and related matrices
15A15 Determinants, permanents, traces, other special matrix functions
15A69 Multilinear algebra, tensor calculus
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Richard Bellman, Introduction to matrix analysis, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1960. · Zbl 0103.07302
[2] Julius Bendat and Seymour Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc. 79 (1955), 58 – 71. · Zbl 0064.36901
[3] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. · Zbl 0131.25601
[4] Chandler Davis, Notions generalizing convexity for functions defined on spaces of matrices, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 187 – 201. · Zbl 0196.30303
[5] Fritz Kraus, Über konvexe Matrixfunktionen, Math. Z. 41 (1936), no. 1, 18 – 42 (German). · Zbl 0013.39701 · doi:10.1007/BF01180403 · doi.org
[6] Karl Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), no. 1, 177 – 216 (German). · Zbl 0008.11301 · doi:10.1007/BF01170633 · doi.org
[7] Marvin Marcus and Henryk Minc, Generalized matrix functions, Trans. Amer. Math. Soc. 116 (1965), 316 – 329. · Zbl 0178.35902
[8] Marvin Marcus and Paul J. Nikolai, Inequalities for some monotone matrix functions, Canad. J. Math. 21 (1969), 485 – 494. · Zbl 0196.05703 · doi:10.4153/CJM-1969-054-5 · doi.org
[9] M. H. Moore, A convex matrix function, Amer. Math. Monthly 80 (1973), 408 – 409. · Zbl 0268.15006 · doi:10.2307/2319083 · doi.org
[10] George D. Mostow and Joseph H. Sampson, Linear algebra, McGraw-Hill Book Co., New York-London-Toronto, Ont., 1969.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.