×

zbMATH — the first resource for mathematics

On entropy and information gain in random fields. (English) Zbl 0258.60029

MSC:
60G10 Stationary stochastic processes
60J05 Discrete-time Markov processes on general state spaces
62B10 Statistical aspects of information-theoretic topics
94A15 Information theory (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Averintsev, M. B.: A way of describing random fields with discrete parameter (in Russian). Problemy Pereda?i Informacii, 6, 100-109 (1970).
[2] Averintsev, M. B.: Description of Markov random fields by conditional Gibbs distributions (in Russian). Teor. Ver. i ee Prim. 17, 2, 21-35 (1972).
[3] Dobru?in, R. L.: Gibbsian random fields for lattice systems with pair interactions. Functional Anal. Appl. 2, 281-301 (1968).
[4] Dobru?in, R. L.: Description of a random field by means of conditional probabilities and conditions of its regularity. Theor. Probability Appl. 13, 197-224 (1968). · doi:10.1137/1113026
[5] Dunford, N. and Schwartz, J.T.: Linear Operators, I. New York: Interscience 1958.
[6] Georgii, H.-O.: Phasen?bergang 1. Art bei Gittergasmodellen. Lecture Notes in Physics 16. Heidelberg-Berlin-New York: Springer 1972.
[7] Jacobs, K.: Lecture Notes on Ergodic Theory. Aarhus Universitet: Aarhus 1963. · Zbl 0196.31301
[8] Lanford III, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Comm. Math. Phys. 13, 194-215 (1969). · doi:10.1007/BF01645487
[9] Meyer, P.A.: Probability and Potentials. Waltham-Toronto-London: Blaisdell 1966. · Zbl 0138.10401
[10] R?nyi, A.: Probability Theory. North-Holland: Amsterdam 1970.
[11] Spitzer, F.: Random fields and interacting particle systems. Notes on lectures given at the 1971 MAA Summer Seminar, Williams College, Williamstown, Mass. Mathematical Association of America 1971.
[12] Spitzer, F.: A variational characterization of finite Markov chains. Ann. Math. Statist. 93, 1, 1303-1307 (1971).
[13] Thouvenot, J.-P.: Convergence en moyenne de l’information pour l’action de Z2. Z. Wahrscheinlichkeitstheorie verw. Gebiete 24, 2, 135-137 (1972). · Zbl 0266.60037 · doi:10.1007/BF00532539
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.