zbMATH — the first resource for mathematics

Probabilistic metric spaces determined by measure preserving transformations. (English) Zbl 0259.60004

60B05 Probability measures on topological spaces
28D05 Measure-preserving transformations
Full Text: DOI
[1] Billingsley, P.: Convergence of Probability Measures. New York: Wiley 1968. · Zbl 0172.21201
[2] Erber, T., Schweizer, B., Sklar, A.: Mixing transformations on metric spaces. Comm. Math. Phys. 29, 311-317 (1973). · Zbl 0269.28005 · doi:10.1007/BF01646133
[3] Erber, T., Sklar, A.: Macroscopic irreversibility as a manifestation of micro-instabilities. In: Modern Developments in Thermodynamics, B. Gal-Or, ed. Jerusalem-New York: Israel Universities Press-Wiley 1973.
[4] Halmos, P.R.: Lectures on Ergodic Theory. New York: Chelsea 1956. · Zbl 0073.09302
[5] Lebowitz, J.L., Penrose, O.: Modern ergodic theory. Physics Today 26, 23-29 (1973).
[6] Lo?ve, M.: Probability Theory. 3rd edn. Princeton: Van Nostrand 1963.
[7] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 313-334 (1960). · Zbl 0091.29801
[8] Sherwood, H.: On E-spaces and their relation to other classes of probabilistic metric spaces. J. London Math. Soc. 44, 441-448 (1969). · Zbl 0167.46202 · doi:10.1112/jlms/s1-44.1.441
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.