The homotopy category is a homotopy category. (English) Zbl 0261.18015


18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
18G99 Homological algebra in category theory, derived categories and functors
55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects)
Full Text: DOI


[1] T.Tom Dieck, K. H.Kamps und D.Puppe, Homotopietheorie. Lecture Notes in Math.157, Berlin-Heidelberg-New York 1970.
[2] A. Dold, Die Homotopieerweiterungseigensehaft (= HEP) ist eine lokale Eigenschaft. Invent. Math.6, 185-189 (1968). · Zbl 0167.51604
[3] I. M. Hall, The generalized Whitney sum. Quart. J. Math. Oxford Ser. (2)16, 360-384 (1965). · Zbl 0141.20902
[4] D. G.Quillen, Homotopical Algebra. Lecture Notes in Math.43, Berlin-Heidelberg-New York 1967.
[5] A. Str?m, Note on cofibrations. Math. Scand.19, 11-14 (1966). · Zbl 0145.43604
[6] A. Str?m, Note on cofibrations II. Math. Scand.22, 130-142 (1968). · Zbl 0181.26504
[7] P. Tulley, On regularity in Hurewicz fiber spaces. Trans. Amer. Math. Soc.116, 126-134 (1965). · Zbl 0142.21803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.