On the measurability of functions of two variables. (English) Zbl 0262.28004


28A20 Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence
28A35 Measures and integrals in product spaces
Full Text: EuDML


[1] DAVIES, ROY O.: Separate approximate continuity implies measurability. · Zbl 0254.26011
[2] DRAVECKÝ J.: On the measurability of functions of two varaibles. Acta Fac. rerum natur. Univ. Comenianae Math. XXVIII, 1972, 11-18.
[3] GOFFMAN C., NEUGEBAUER C. J., NISHIURA T.: Density topology and approximate continuity. Duke Math. J. 28, 1961, 497-505. · Zbl 0101.15502
[4] LIPIŃSKI J. S.: On measurability of functions of two variables. Bull. Acad. polon. Sér sci. math. astron. et phys., 20, 1972, 131-135. · Zbl 0228.28009
[5] MARCZEWSKI E., RYLL-NARDZEWSKI C.: Sur la measurabilité des fonctions de plusieurs variables. Ann. Soc. polon. math. 25, 1953, 145-154. · Zbl 0048.28604
[6] MICHAEL J. H., RENNIE C.: Measurability of functions of two variables. J. Austral. Math. Soc. 1, 1959, 21-26. · Zbl 0094.25903
[7] NEUBRUNN T.: Merateľnos\? niektorých funkcií na kartézskych súčinnoch. Mat.-fyz. časop., 10, 1960, 216-221.
[8] SIERPIŃSKI W.: Sur l’hypothese du continu \(2^{\aleph_0}=\aleph_1\). Fundam. math., 5, 1924, 177-187.
[9] URSELL H. D.: Some methods of proving measurability. Fundam. math., 32, 1939, 311-330. · Zbl 0021.11302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.