×

Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings. (English) Zbl 0262.47038


MSC:

47H10 Fixed-point theorems
47J05 Equations involving nonlinear operators (general)
49M05 Numerical methods based on necessary conditions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Altman, M, A fixed point theorem in Banach spaces, Bull. acad. polon. sci. cl. III., 5, 19-22, (1957) · Zbl 0077.31902
[2] Belluce, L.P; Kirk, W.A, Fixed-point theorems for certain classes of nonexpansive mappings, (), 141-146 · Zbl 0165.16801
[3] Belluce, L.P; Kirk, W.A, Some fixed point theorems in metric and Banach spaces, Canad. J. math., 12, 481-491, (1969) · Zbl 0195.42901
[4] Browder, F.E, On a theorem of Beurling and livingston, Canad. J. math., 17, 367-372, (1965) · Zbl 0132.10602
[5] Browder, F.E, Nonexpansive nonlinear operators in Banach space, (), 1041-1044 · Zbl 0128.35801
[6] Browder, F.E, Fixed point theorems for nonlinear semi-contractive mappings in Banach spaces, Arch. rat. mech. anal., 21, 259-269, (1966) · Zbl 0144.39101
[7] Browder, F.E, Semicontractive and semiaccretive nonlinear mapping in Banach spaces, Bull. amer. math. soc., 74, 660-665, (1968) · Zbl 0164.44801
[8] Browder, F.E; Petryshyn, W.V, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. amer. math. soc., 72, 571-575, (1966) · Zbl 0138.08202
[9] Browder, F.E; Petryshyn, W.V, Construction of fixed points of nonlinear mappings in Hilbert space, J. math. anal. and appl., 20, 197-228, (1967) · Zbl 0153.45701
[10] Darbo, G, Punti unité in transformazioni a condominio non compatto, (), 84-92 · Zbl 0064.35704
[11] de Figueiredo, D.G, Topics in nonlinear functional analysis, university of maryland lecture notes N, 48, (1967) · Zbl 0176.45403
[12] de Figueiredo, D.G; Karlovitz, L.A, On the radial projection in normed spaces, Bull. amer. math. soc., 73, 364-368, (1967) · Zbl 0172.16102
[13] Diaz, J.B; Metcalf, F.T, On the structure of the set of subsequential limit points of successive approximations, Bull. amer. math. soc., 73, 516-519, (1967) · Zbl 0161.20103
[14] Diaz, J.B; Metcalf, F.T, On the set of subsequential limit points of successive approximations, Trans. amer. math. soc., 135, 459-485, (1969) · Zbl 0174.25904
[15] Dotson, W.G, On the Mann iterative process, Trans. amer. math. soc., 149, 65-73, (1970) · Zbl 0203.14801
[16] Edelstein, M, A remark on a theorem of M. A. krasnoselsky, American math. monthly, 13, 509-510, (1966) · Zbl 0138.39901
[17] Fitzpatrick, P.M, A-proper mappings and their uniform limits, Rutgers university ph.D. thesis, (1971) · Zbl 0215.21304
[18] Frum-Ketkov, R.L, On mappings of the sphere of a Banach space, Dokladi akad. nauk. USSR, 155, 1229-1231, (1967) · Zbl 0186.46904
[19] Furi, M; Vignoli, A, A fixed point theorem in complete metric spaces, Boll. unione mat. ital. ser. IV, #4-5, 505-509, (1969) · Zbl 0183.51404
[20] Gohberg, I.T; Goldenstein, L.S; Markus, A.S, Investigation of some properties of bounded linear operators in connection with their q-norms, Uch. zap. kishinovsk. inst., 29, 29-36, (1957)
[21] Göhde, D, Zum prinzip der kontraktiven abbildungen, Math. nachr., 30, 251-258, (1965) · Zbl 0127.08005
[22] Gossez, J.P; Dozo, E.Lami, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. math., 40, 565-573, (1972) · Zbl 0223.47025
[23] Kirk, W.A, A fixed point theorem for mappings which do not increase distance, Amer. math. monthly, 72, 1004-1006, (1965) · Zbl 0141.32402
[24] Krasnoselsky, M.A, Two observations about the method of successive approximations, Uspehi math. nauk., 10, 123-127, (1955)
[25] Kuratowski, C, Sur LES espaces complètes, Fund. math., 15, 301-306, (1930) · JFM 56.1124.04
[26] Nussbaum, R.D, The fixed point index and fixed point theorems for k-set-contractions, () · Zbl 0174.45402
[27] Nussbaum, R.D, Asymptotic fixed point theorems for local condensing maps, Math. am., 191, 181-195, (1971) · Zbl 0202.54004
[28] Nussbaum, R.D, Some asymptotic fixed point theorems, Trans. amer. math. soc., 171, 349-375, (1972) · Zbl 0256.47040
[29] Opial, Z, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. amer. math. soc., 73, 591-597, (1967) · Zbl 0179.19902
[30] Outlaw, C, Mean value iteration of nonexpansive mappings in a Banach space, Pacific J. math., 30, 747-750, (1969), #3 · Zbl 0179.19801
[31] Petryshyn, W.V, Construction of fixed points of demicompact mappings in Hilbert space, J. math. anal. and appl., 14, 276-284, (1966) · Zbl 0138.39802
[32] Petryshyn, W.V, On a fixed point theorem for nonlinear P-compact operators in Banach space, Bull. amer. math. soc., 72, 329-334, (1966) · Zbl 0142.11201
[33] Petryshyn, W.V, Further remarks on nonlinear P-compact operators in Banach space, J. math. anal. and appl., 16, 243-253, (1966) · Zbl 0149.10603
[34] Petryshyn, W.V, Iterative construction of fixed points of contractive type mappings in Banach spaces, (), 309-340, July · Zbl 0187.09301
[35] Petryshyn, W.V, Structure of fixed points sets of k-set-contractions, Archive rat. mech. and anal., 40, 312-328, (1971) · Zbl 0218.47028
[36] Petryshyn, W.V, A new fixed point theorem and its application, Bull. amer. math. soc., (1972), March · Zbl 0231.47030
[37] {\scW. V. Petryshyn}, Fixed point theorems for various classes of 1-set-contractive and 1-ball-contractive mappings in Banach spaces, Trans. Amer. Math. Soc., to appear. · Zbl 0277.47033
[38] Petryshyn, W.V; Tucker, T.S, On the functional equations involving nonlinear generalized P-compact operators, Trans. amer. math. soc., 135, 343-373, (1969) · Zbl 0174.19501
[39] Sadovsky, B.N, On a fixed point principle, Funktional anal. i prilozen., 1, 74-76, (1967), #2 · Zbl 0165.49102
[40] Schaefer, H, Über die methoden sukzessiver approximationen, Jahresberichte Deutsch. math. verein., 59, 131-140, (1957) · Zbl 0077.11002
[41] Tricomi, F, Un teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variable reale, Giorn. mat. battaglini, 54, 1-9, (1916) · JFM 46.0439.03
[42] Webb, J.R.L, Fixed point theorems for nonlinear semicontractive operators in Banach spaces, J. London math. soc., 1, 683-688, (1969) · Zbl 0185.39502
[43] Ship-Fah, Wong-Ng, Le degré topologique de certaines applications non-compactes, nonlinéaires, Univ. of Montreal ph.D. thesis, (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.