×

zbMATH — the first resource for mathematics

How a minimal surface leaves an obstacle. (English) Zbl 0262.53003

MSC:
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
35J20 Variational methods for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Giaquinta and L. Pepe, Esistenza e regolarit√† per il problema dell’area minima con ostacoli in \? variabili, Ann. Scuola Norm. Sup. Pisa (3) 25 (1971), 481 – 507 (Italian). · Zbl 0283.49032
[2] David Kinderlehrer, The coincidence set of solutions of certain variational inequalities., Arch. Rational Mech. Anal. 40 (1970/1971), 231 – 250. · Zbl 0219.49014 · doi:10.1007/BF00281484 · doi.org
[3] David Kinderlehrer, The regularity of the solution to a certain variational inequality, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 353 – 363.
[4] Hans Lewy, On the boundary behavior of minimal surfaces, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 103 – 110. · Zbl 0042.15702
[5] Hans Lewy, On mimimal surfaces with partially free boundary, Comm. Pure Appl. Math. 4 (1951), 1 – 13. · doi:10.1002/cpa.3160040102 · doi.org
[6] Hans Lewy and Guido Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math. 22 (1969), 153 – 188. · Zbl 0167.11501 · doi:10.1002/cpa.3160220203 · doi.org
[7] Hans Lewy and Guido Stampacchia, On existence and smoothness of solutions of some non-coercive variational inequalities, Arch. Rational Mech. Anal. 41 (1971), 241 – 253. · Zbl 0237.49005 · doi:10.1007/BF00250528 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.