Kunen, Kenneth Ultrafilters and independent sets. (English) Zbl 0263.02033 Trans. Am. Math. Soc. 172(1972), 299-306 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 46 Documents MSC: 03E50 Continuum hypothesis and Martin’s axiom 03C30 Other model constructions 03E05 Other combinatorial set theory PDF BibTeX XML Cite \textit{K. Kunen}, Trans. Am. Math. Soc. 172, 299--306 (1973; Zbl 0263.02033) Full Text: DOI OpenURL References: [1] C. C. Chang and H. J. Keisler, Model theory, North-Holland, New York (to appear). · Zbl 0276.02032 [2] R. Engelking and M. Karłowicz, Some theorems of set theory and their topological consequences, Fund. Math. 57 (1965), 275 – 285. · Zbl 0137.41904 [3] G. Fichtenholz and L. Kantorovitch, Sur les opérations linéairs dans l’espace des fonctions bornées, Studia Math. 5 (1934), 69-98. · JFM 60.1074.05 [4] F. Hausdorff, Über zwei Sätze von G. Fichtenholz und L. Kantorovitch, Studia Math. 6 (1936), 18-19. · JFM 62.1064.01 [5] Kenneth Kunen, Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), 179 – 227. · Zbl 0236.02053 [6] K. Kunen and J. B. Paris, Boolean extensions and measurable cardinals, Ann. Math. Logic 2 (1970/1971), no. 4, 359 – 377. · Zbl 0216.01402 [7] Mary Ellen Rudin, Partial orders on the types in \?\?, Trans. Amer. Math. Soc. 155 (1971), 353 – 362. · Zbl 0212.54901 [8] Saharon Shelah, Every two elementarily equivalent models have isomorphic ultrapowers, Israel J. Math. 10 (1971), 224 – 233. · Zbl 0224.02045 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.