×

zbMATH — the first resource for mathematics

Strong rigidity of Q-rank 1 lattices. (English) Zbl 0264.22009

MSC:
22E15 General properties and structure of real Lie groups
22E40 Discrete subgroups of Lie groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ahlfors, L. V., Sario, L.: Riemann surfaces. Princeton, N.J.: Princeton Univ. Press 1960 · Zbl 0196.33801
[2] Garland, H., Raghunathan, M.S.: Fundamental domains for lattices inR-rank 1 s.s. Lie groups. Annals of Math.92, 279-326 (1970) · Zbl 0206.03603 · doi:10.2307/1970838
[3] Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962 · Zbl 0111.18101
[4] Husemoller, D.: Fiber bundles. New York: McGraw-Hill 1966 · Zbl 0144.44804
[5] Koszul, J. L.: Lectures on Groups of Transformations. Tata Inst. of Fund. Research, Bombay, 1965 · Zbl 0195.04605
[6] Mangler, W.: Die Klassen von topologischen Abbildungen. Math. Z.44, 541-554 (1939) · Zbl 0019.28203 · doi:10.1007/BF01210672
[7] Mostow, G.D.: Self adjoint groups. Ann. of Math.62, 44-55 (1955) · Zbl 0065.01404 · doi:10.2307/2007099
[8] Mostow, G.D.: On the fundamental group of a homogeneous space. Ann. of Math.66, 249-255 (1957) · Zbl 0093.03402 · doi:10.2307/1969997
[9] Mostow, G.D.: Strong rigidity of locally symmetric spaces. Annals of Mathematics Studies, Princeton University Press, Princeton 1973 · Zbl 0265.53039
[10] Prasad, G.: Unipotent elements and isomorphism of lattices in s.s. groups. (To appear)
[11] Prasad, G., Raghunathan, M.S.: Cartan subgroups and lattices in s.s. groups. Annals of Math.96, 296-317 (1972) · Zbl 0245.22013 · doi:10.2307/1970790
[12] Raghunathan, M.S.: Discrete subgroups of Lie groups. Berlin-Heidelberg-New York: Springer 1972 · Zbl 0254.22005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.