×

The spectrum of a ring as a partially ordered set. (English) Zbl 0266.13010


MSC:

13C05 Structure, classification theorems for modules and ideals in commutative rings
06A06 Partial orders, general
13A15 Ideals and multiplicative ideal theory in commutative rings
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Cohn, P.M, Universal algebra, (1965), Harper and Row New York · Zbl 0141.01002
[2] Gilmer, R.W, Multiplicative ideal theory, () · Zbl 0248.13001
[3] Gilmer, R.W; Ohm, J, Integral domains with quotient overrings, Math. ann., 153, 97-103, (1964) · Zbl 0128.26004
[4] Gilmer, R.W; Ohm, J, Primary ideals and valuation ideals, Trans. amer. math. soc., 117, 235-250, (1965) · Zbl 0133.29203
[5] Hochster, M, Prime ideal structure in commutative rings, Trans. amer. math. soc., 142, 43-60, (1969) · Zbl 0184.29401
[6] Jaffard, P, LES systèmes d’idéaux, (1960), Dunod Paris · Zbl 0101.27502
[7] Kaplansky, I, Commutative rings, (1970), Allyn and Bacon Boston · Zbl 0203.34601
[8] Kikuchi, T, Some remarks on S-domains, J. math. Kyoto univ., 6, 49-60, (1966) · Zbl 0158.03905
[9] Krull, W, Beiträge zur arithmetik kommutativer integritätsbereiche, Math. Z., 41, 545-577, (1936) · JFM 62.1105.01
[10] Nagata, M, Local rings, (1962), Interscience New York · Zbl 0123.03402
[11] Ohm, J, Semi-valuations and groups of divisibility, Can. J. math., 21, 576-591, (1969) · Zbl 0177.06501
[12] {\scJ. Ohm and R. L. Pendleton}, Weak Krull rings, unpublished notes. · Zbl 0172.32201
[13] Zariski, O; Samuel, P, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.