×

zbMATH — the first resource for mathematics

Irreducible canonical form realization of a rational matrix. (English) Zbl 0269.93012

MSC:
93B20 Minimal systems representations
15A21 Canonical forms, reductions, classification
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ACKERMAN J. E., I.E.E.E. Trans, autom. Control 17 pp 381– (1972)
[2] ACKERMAN J. E., Inf. Control 19 pp 224– (1971) · Zbl 0224.93010
[3] CHEN C. T., Introduction to Linear System Theory (1970)
[4] CHEN C. T., I.E.E.E. Trans, autom. Control 17 pp 535– (1972) · Zbl 0259.93005
[5] Ho , B. L. , and KALMAN , R. E. , 1965 ,Proc. Third Allerton Conference, p. 449 .
[6] KALMAN R. E., Aspects of Network and System Theory (1970)
[7] NEWCOMB R. W., Active Integrated Circuit Synthesis (1967)
[8] RISSANEN , J. , 1971 ,Preprint JACC, p. 335 .
[9] SILVERMAN L. M., I.E.E.E. Trans, autom. Control 16 pp 554– (1971)
[10] TETHER H. J., I.E.E.E. Trans, autom. Control 15 pp 437– (1970)
[11] YOULA D. C., I.E.E.E. int. Conv. Rec. 14 pp 183– (1966)
[12] ZEIGER H. P., Inf. Control 11 pp 71– (1967) · Zbl 0178.10002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.