×

zbMATH — the first resource for mathematics

The quotient category of a Morita context. (English) Zbl 0277.16019

MSC:
16Exx Homological methods in associative algebras
16Gxx Representation theory of associative rings and algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amitsur, S.A, Rings of quotients and Morita contexts, J. algebra, 17, 273-298, (1971) · Zbl 0221.16014
[2] Anderson, F.W, Endomorphism rings of projective modules, Math. Z., 111, 322-332, (1969) · Zbl 0179.33903
[3] Auslander, M; Goldman, O, Maximal orders, Trans. amer. math. soc., 97, 1-24, (1960) · Zbl 0117.02506
[4] Bass, H, The Morita theorems, mimeographed notes, (1962)
[5] Bass, H, Algebraic K-theory, (1968), Benjamin New York · Zbl 0174.30302
[6] Cohn, P.M, Morita equivalence and duality, Queen mary college math. notes, (1966) · Zbl 0377.16015
[7] Cunningham, R.S, Morita equivalent rings of quotients, Notices amer. math. soc., 19, A-73, (1972)
[8] Cunningham, R.S; Rutter, E.A, On perfect injectors and perfect projectors, Notices amer. math. soc., 18, 114, (1971)
[9] Cunningham, R.S; Rutter, E.A; Turnidge, D.R, Rings of quotients of endomorphism rings of projective modules, Pacific J. math., 41, 647-668, (1972) · Zbl 0215.37903
[10] Faith, C, Simple Noetherian rings, Bull. amer. math. soc., 70, 730-731, (1964) · Zbl 0132.02301
[11] Faith, C, Lectures on injective modules and quotient rings, Springer lecture notes in math., 49, (1967) · Zbl 0162.05002
[12] Faith, C, A correspondence theorem for projective modules and the structure of simple Noetherian rings, Bull. amer. math. soc., 77, 338-342, (1971) · Zbl 0217.06002
[13] Faith, C; Utumi, Y, On Noetherian prime rings, Trans. amer. math. soc., 114, 53-60, (1965) · Zbl 0203.04401
[14] Feller, E.H; Swokowski, E.W, The ring of endomorphisms of a torsionfree module, J. London math. soc., 39, 41-42, (1964) · Zbl 0122.28804
[15] Fossum, T.V, Lattice isomorphisms between Morita related modules, Notices amer. math. soc., 18, 361, (1971)
[16] Gabriel, P, Des catégories abéliennes, Bull. soc. math. France, 90, 323-448, (1962) · Zbl 0201.35602
[17] Gabriel, P; Popesco, N, Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes, C. R. acad. sci. Paris, 258, 4188-4190, (1964) · Zbl 0126.03304
[18] Goldie, A.W, Semiprime rings with maximum condition, (), 201-220 · Zbl 0091.03304
[19] Hart, R, Endomorphisms of modules over semiprime rings, J. algebra, 4, 46-51, (1966) · Zbl 0145.04302
[20] Hart, R, Simple rings with uniform right ideals, J. London math. soc., 42, 614-617, (1967) · Zbl 0154.27602
[21] Hart, R; Robson, J.C, Simple rings and rings Morita equivalent to ore domains, (), 232-242 · Zbl 0205.05601
[22] Jacobson, N, Structure of rings, Amer. math. soc. publ., 37, (1964)
[23] Jategaonkar, A.V, Endomorphism rings of torsionless modules, Trans. amer. math. soc., 161, 457-466, (1971) · Zbl 0224.16005
[24] Johnson, R.E, Quotient rings of rings with zero singular ideal, Pacific J. math., 11, 1385-1392, (1961) · Zbl 0204.04504
[25] Johnson, R.E, Prime matrix rings, (), 1099-1105 · Zbl 0136.31001
[26] Kato, T, Dominant modules, J. algebra, 14, 341-349, (1970) · Zbl 0191.04001
[27] Kato, T, U-distinguished modules, J. algebra, 25, 15-24, (1973) · Zbl 0252.16006
[28] Koh, K, On simple rings with maximal annihilator right ideals, Canad. math. bull., 8, 667-668, (1965) · Zbl 0148.26303
[29] Koh, K; Mewborn, A.C, Prime rings with maximal annihilator and maximal complement right ideals, (), 1073-1076 · Zbl 0136.30907
[30] Lambek, J, On the structure of semiprime rings and their rings of quotients, Canad. J. math., 13, 392-417, (1961) · Zbl 0108.03502
[31] Lambek, J, Lectures on rings and modules, (1966), Blaisdell Waltham, Mass., · Zbl 0143.26403
[32] \scR. W. Miller, Quasi-generators, preprint.
[33] Morita, K, Duality for modules and its applications to the theory of rings with minimum condition, Sci. rep. Tokyo kyoiku daigaku, 6, 83-142, (1958) · Zbl 0080.25702
[34] Morita, K, Duality in QF-3 rings, Math. Z., 108, 237-252, (1969) · Zbl 0169.35701
[35] \scK. Morita and T. Tachikawa, QF-3 rings, preprint. · Zbl 0075.24301
[36] Roos, J.E, Caractérisation des catégories qui sont quotients de catégories de modules par des sous-catégories bilocalisantes, C. R. acad. sci. Paris, 261, 4954-4957, (1965) · Zbl 0135.02202
[37] Sandomierski, F.L, Semisimple maximal quotient rings, Trans. amer. math. soc., 128, 112-120, (1967) · Zbl 0159.04303
[38] Sandomierski, F.L, Modules over the endomorphism ring of a finitely generated projective module, (), 27-31 · Zbl 0233.16021
[39] Stenström, B, Rings and modules of quotients, Springer lecture notes in math., 237, (1971) · Zbl 0229.16003
[40] Tachikawa, H, On splitting of module categories, Math. Z., 111, 145-150, (1969) · Zbl 0182.05901
[41] Turnidge, D.R, Rings of quotients of Morita equivalent rings, Notices amer. math. soc., 16, 114, (1969) · Zbl 0194.06504
[42] Willard, E.R, Properties of projective generators, Math. ann., 158, 352-364, (1965) · Zbl 0131.27303
[43] Zelmanowitz, J.M, Endomorphism rings of torsionless modules, J. algebra, 5, 325-341, (1967) · Zbl 0155.36102
[44] Zelmanowitz, J.M, A shorter proof of Goldie’s theorem, Canad. math. bull., 12, 597-602, (1969) · Zbl 0185.09004
[45] Zelmanowitz, J.M, Semiprime modules with maximum condition, J. algebra, 25, 554-574, (1973) · Zbl 0258.16002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.