×

Solution of a viscoelastic boundary layer equation by orthogonal collocation. (English) Zbl 0277.76002


MSC:

76A10 Viscoelastic fluids
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] B. A. Finlayson,The Method of Weighted Residuals and Variational Principles, Academic Press, 1972. · Zbl 0319.49020
[2] H. E. Bethel, On a Convergent Multi-Moment Method for the Laminar Boundary Layer Equations.Aeronaut. Q., 18 (1967), 332. · Zbl 0148.22003
[3] H. H. Bossel, Boundary Layer Computation by an N Parameter Integral Method Using Exponentials,AIAA Journal, 8 (1970) 1841. · Zbl 0219.76031
[4] M. K. Jain, An Extremal Point Collocation Method for Fluid Flow Problems,Appl. Sci. Res. (A), 11 (1962) 177. · Zbl 0115.21003
[5] J. V. Villadsen and W. E. Stewart, Solution of Boundary-Value Problems by Orthogonal CollocationChem. Eng. Sci., 22 (1967) 1483.
[6] D. W. Beard and K. Walters, Elastico-viscous Boundary Layer Flows I. Two-Dimensional Flow-Hear a Stagnation Point,Proc Comb. Phil. Soc., 60 (1964) 667. · Zbl 0123.41601
[7] R. T. Davis, Boundary Layer Theory for Viscoelastic Liquids,Proc 10th Midwestern Mechanics Conference, (1967) 1145.
[8] K. R. Frater, On the Solution of Some Boundary-value Problems Arising in Elastico-viscous Fluid Mechanics,Z. angew. Math. Phys., 21 (1970) 134. · Zbl 0185.54102
[9] G. K. Rajeswari and S. L. Rathna, Flow of a Particular Class of non-Newtonian Viscoelastic and Pisco-inelastic Fluids near a Stagnation Point,Z. angew. Math. Phys., 13 (1962) 43. · Zbl 0105.19503
[10] M. H. Davies, A Note on Elastico-Viscous Boundary Layer Flows,Z. angew. Math. Phys., 17 (1966) 189.
[11] M. M. Denn, Boundary Layer Flows for a Class of Elastic Liquids,Chem. Eng. Sci. 22 (1967) 395.
[12] J. Peddieson, Wedge and Cone Flows of Viscoelastic Liquids,A.I.Ch.E. Journal, 19 (1973) 377.
[13] N. I. Akhiezer and I. M. Glazman,Theory of Linear Operators in Hilbert Space, Chp. 1, Ungar, 1961. · Zbl 0098.30702
[14] M. Abramowitz and I. A. Stegun (Eds.),Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series No. 55, Chps. 22 and 25, 1966.
[15] D. W. Marquardt, An Algorithm for Least-Squares Estimation on Nonlinear Parameters,J. Soc. Indust. Appl. Math. 11 (1963) 431. · Zbl 0112.10505
[16] H. Goertler, Zahlentafeln Universeller Funktionen zur neuen Reihe für die Berechnung laminarer Grenzschichten,Deutsche Versuchsanstalt für Luftfahrt E.V., Bericht No. 34 (1957).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.