×

zbMATH — the first resource for mathematics

Some nonprojective subgroups of free topological groups. (English) Zbl 0278.22001

MSC:
22A05 Structure of general topological groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Brown and J. P. L. Hardy, Subgroups of free topological groups and free topological products of topological groups, J. London Math. Soc. (2) 10 (1975), no. 4, 431 – 440. · Zbl 0304.22003 · doi:10.1112/jlms/s2-10.4.431 · doi.org
[2] James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. · Zbl 0144.21501
[3] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. · Zbl 0186.56802
[4] M. I. Graev, Free topological groups, Izvestiya Akad. Nauk SSSR. Ser. Mat. 12 (1948), 279 – 324 (Russian).
[5] C. E. Hall, \?-projective objects, Proc. Amer. Math. Soc. 26 (1970), 193 – 195. · Zbl 0223.18002
[6] J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. · Zbl 0769.55001
[7] Sidney A. Morris, Remarks on varieties of topological groups, Mat. Časopis Sloven. Akad. Vied 24 (1974), 7 – 14. · Zbl 0275.22002
[8] Sidney A. Morris, Edward T. Ordman, and H. B. Thompson, The topology of free products of topological groups, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Springer, Berlin, 1974, pp. 504 – 515. Lecture Notes in Math., Vol. 372. · Zbl 0289.22002
[9] P. Nickolas, Subgroups of the free topological group on \( [0,1]\), J. London Math. Soc. (to appear). · Zbl 0318.22002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.