×

zbMATH — the first resource for mathematics

Polynomial approximation on tetrahedrons in the finite element method. (English) Zbl 0279.41005

MSC:
41A10 Approximation by polynomials
41A05 Interpolation in approximation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berezin, I.S; Židkov, N.P, (), (English translation)
[2] Birkhoff, G; Schultz, M.H; Varga, R.S, Piecewise Hermite interpolation in one and two variables with applications to partial differential equations, Numer. math., 11, 232-256, (1968) · Zbl 0159.20904
[3] Ženíšek, A, Interpolation polynomials on the triangle, Numer. math., 15, 283-296, (1970) · Zbl 0216.38901
[4] Bramble, J.H; Zlámal, M, Triangular elements in the finite element method, Math. comp., 24, 809-820, (1970) · Zbl 0226.65073
[5] Ženíšek, A, ()
[6] Zlámal, M, On the finite element method, Numer. math., 12, 394-409, (1968) · Zbl 0176.16001
[7] Ciarlet, P.G; Wagschal, C, Multipoint Taylor formulas and applications to the finite element method, Numer. math., 17, 84-100, (1971) · Zbl 0199.50104
[8] Ženíšek, A, Interpolation polynomials on the triangle and the finite element method, (), (in Czech) · Zbl 0216.38901
[9] Smirnov, V.I, (), (English translation)
[10] Lions, J.L; Magenes, E, ()
[11] Ženíšek, A; Zlámal, M, Convergence of a finite element procedure for solving boundary value problems of the fourth order, Internat. J. numer. meth. engrg., 2, 307-310, (1970) · Zbl 0256.65055
[12] Céa, J, Approximation variationelle des problèmes aux limites, Ann. inst. Fourier (Grenoble), 14, 345-444, (1964) · Zbl 0127.08003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.