×

zbMATH — the first resource for mathematics

Concerning the shapes of finite-dimensional compacta. (English) Zbl 0281.57004

MSC:
57N15 Topology of the Euclidean \(n\)-space, \(n\)-manifolds (\(4 \leq n \leq \infty\)) (MSC2010)
55P10 Homotopy equivalences in algebraic topology
55P99 Homotopy theory
58B05 Homotopy and topological questions for infinite-dimensional manifolds
57N30 Engulfing in topological manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365 – 383. · Zbl 0148.37202
[2] R. H. Bing and J. M. Kister, Taming complexes in hyperplanes, Duke Math. J. 31 (1964), 491 – 511. · Zbl 0124.16701
[3] Karol Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223 – 254. · Zbl 0159.24603
[4] K. Borsuk, Remark on a theorem of S. Mardešić, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 475 – 483 (English, with Russian summary). · Zbl 0232.55022
[5] J. L. Bryant, On embeddings of compacta in Euclidean space, Proc. Amer. Math. Soc. 23 (1969), 46 – 51. · Zbl 0186.57701
[6] J. L. Bryant, On embeddings of 1-dimensional compacta in \?\(^{5}\), Duke Math. J. 38 (1971), 265 – 270. · Zbl 0224.54011
[7] J. L. Bryant and C. L. Seebeck III, An equivalence theorem for embeddings of compact absolute neighborhood retracts, Proc. Amer. Math. Soc. 20 (1969), 256 – 258. · Zbl 0191.22101
[8] T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), no. 3, 181 – 193. · Zbl 0262.55016
[9] T. A. Chapman, Shapes of finite-dimensional compacta, Fund. Math. 76 (1972), no. 3, 261 – 276. · Zbl 0222.55019
[10] Ross Geoghegan and R. Richard Summerhill, Infinite-dimensional methods in finite-dimensional geometric topology, Bull. Amer. Math. Soc. 78 (1972), 1009 – 1014. · Zbl 0256.57004
[11] Herman Gluck, Embeddings in the trivial range, Ann. of Math. (2) 81 (1965), 195 – 210. · Zbl 0134.42904 · doi:10.2307/1970614 · doi.org
[12] D. W. Henderson, Applications of infinite-dimensional manifolds to quotient spaces of complete ANR’s, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 748 – 753 (English, with Russian summary). · Zbl 0218.55012
[13] J. F. P. Hudson, Piecewise linear topology, University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0189.54507
[14] Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. · Zbl 0060.39808
[15] D. R. McMillan Jr., Taming Cantor sets in \?\(^{n}\), Bull. Amer. Math. Soc. 70 (1964), 706 – 708. · Zbl 0122.18101
[16] M. A. Štan\(^{\prime}\)ko, Imbedding of compacta in euclidean space, Mat. Sb. (N.S.) 83 (125) (1970), 234 – 255 (Russian).
[17] H. G. Bothe, A tangled 1-dimensional continuum in \?³ which has the cube-with-handles property, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 481 – 486 (English, with Russian summary). · Zbl 0236.57002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.