×

zbMATH — the first resource for mathematics

On the existence of real analytic solutions of partial differential equations with constant coefficients. (English) Zbl 0282.35015

MSC:
35E99 Partial differential equations and systems of partial differential equations with constant coefficients
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Andersson, K. G.: Propagation of analyticity of solutions of partial differential equations with constant coefficients. Ark. Mat.8, 277-302 (1971) · Zbl 0211.40502 · doi:10.1007/BF02589579
[2] Andersson, K. G.: Global solvability of, partial differential equations in the space of real analytic functions. Coll. on Analysis, Rio de Janeiro August 1972
[3] De Giorgi, E.: Solutions analytiques des équations aux derivées partielles à coefficients constants. Séminaire Goulaouic-Schwartz 1971/72, Exposé 29
[4] De Giorgi, E., Cattabriga, L.: Una dimostrazione diretta dell’esistenza di soluzioni analytiche nel piano reale di equazioni a derivate parziali a coefficienti constanti. Bull. Un. Mat. Ital.4, 1015-1027 (1971)
[5] Ehrenpreis, L.: Fourier analysis in several complex variables. New York: John Wiley and Sons 1970 · Zbl 0195.10401
[6] Hörmander, L.: An introduction to complex analysis in several variables. Princeton, N.J.: D. van Nostrand Publ. Co. 1966 · Zbl 0138.06203
[7] Hörmander, L.: Supports and singular supports of convolutions. Acta Math.110, 279-302 (1963) · Zbl 0188.19406 · doi:10.1007/BF02391861
[8] Hörmander, L.: Linear partial differential operators. Berlin-Göttingen-Heidelberg: Springer 1963 · Zbl 0108.09301
[9] Kawai, T.: On the global existence of real analytic solutions of linear differential equations I. To appear in J. Math. Soc. Japan · Zbl 0223.35020
[10] Malgrange, B.: Existence et approximation des solutions des équations aux derivées partielles et des équations de convolution. Ann. Inst. Fourier Grenoble6, 271-355 (1955-56)
[11] Narasimhan, R.: Introduction to the theory of analytic spaces. Springer lecture notes in Mathematics 25. Berlin-Heidelberg-New York: Springer 1966 · Zbl 0168.06003
[12] Piccinini, L.C.: Non surjectivity of ?2/?x 2 + ?2/?y 2 as an operator on the space of analytic functions on ?3. Lecture notes of Summer College on Global Analysis, Trieste 1972
[13] Piccinini, L.C.: Non surjectivity of the Cauchy-Riemann operator on the space of the analytic functions on ? n . Generalization to the parabolic operators. Boll. Un. Mat. Ital.7, 12-28 (1973) · Zbl 0264.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.