×

zbMATH — the first resource for mathematics

Esistenza e regolarita per il problema dell’area minima con ostacoli in n variabili. (Italian) Zbl 0283.49032

MSC:
49Q05 Minimal surfaces and optimization
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] S. Agmon - A. Dougis - L. Nirenberg - Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary condition I . Comm. Pure Appl. Math. vol. XII ( 1959 ). MR 125307 | Zbl 0093.10401 · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2] S. Agmon - A. Dougis . L. Nirenberg - Idem II , Comm. Pure Appl. Math. vol. XVII ( 1964 ).
[3] H. Brezis - G. Stampacchia - Sur la régularité de la solutions d’inéquations elliptiques . Bull. Soc. Math. de France , 96 ( 1968 ). Numdam | MR 239302 | Zbl 0165.45601 · Zbl 0165.45601 · numdam:BSMF_1968__96__153_0 · eudml:87105
[4] H. Lewy - G. Stampacchia - On the regularity of the solutions of a variational inequality . Comm. Pure Appl. Math. vol. XXII ( 1969 ). MR 247551 | Zbl 0167.11501 · Zbl 0167.11501 · doi:10.1002/cpa.3160220203
[5] M. Miranda - Un teorema di esistenza e unicità per il problema dell’area minima in n variabili . Ann. Scuola Norm. Sup. Pisa 1965 . Numdam | Zbl 0137.08201 · Zbl 0137.08201 · numdam:ASNSP_1965_3_19_2_233_0 · eudml:83348
[6] C.B. Morrey - Multiple Integrals in the Calculus of Variations . Springer. Verlag ( 1966 ). MR 202511 | Zbl 0142.38701 · Zbl 0142.38701
[7] J.C.C. Nitche - Variational problems with inequalities as boundary conditions . Arch. Rat. Mech. Anal. ( 1969 ). Zbl 0209.41601 · Zbl 0209.41601 · doi:10.1007/BF00247614
[8] G. Stampacchia - Le problème áe Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus . Ann. Inst. Fourier t. 15 ( 1965 ). Numdam | MR 192177 | Zbl 0151.15401 · Zbl 0151.15401 · doi:10.5802/aif.204 · numdam:AIF_1965__15_1_189_0 · eudml:73861
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.