×

Abstract algebraic geometry. (English) Zbl 0284.14003

Translation from Itogi Nauki Tehn., Ser. Algebra, Topologiya, Geometriya 10, 47–112 (1972; Zbl 0277.14001).

MSC:

14-03 History of algebraic geometry
14Axx Foundations of algebraic geometry
14Fxx (Co)homology theory in algebraic geometry
14D15 Formal methods and deformations in algebraic geometry
14H30 Coverings of curves, fundamental group
14B15 Local cohomology and algebraic geometry
14B20 Formal neighborhoods in algebraic geometry

Citations:

Zbl 0277.14001
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. Artin, ?Étale cohomology of schemes,? Uspekhi Mat. Nauk,20, No. 6, 13?18 (1965).
[2] M. Artin, ?Some numerical criteria for contractability of curves on algebraic surfaces,? Matematika (Periodic Collection of Translations of Foreign Articles),9, No. 3, 3?14 (1965).
[3] M. Artin, ?Algebraic approximation of structures over complete local rings,? Matematika (Periodic Collection of Translations of Foreign Articles),14, No. 3, 3?39 (1970).
[4] M. Artin, ?Algebraization of formal moduli. 1,? in: Global Analysis, Collection of Mathematical Papers in Honor of K. Kodaira, Univ. of Tokyo Press, Tokyo (1970).
[5] M. Artin, Algebraic Spaces, mimeographed, The Whittemore Lectures, Yale Univ., New Haven, Conn. (1969).
[6] M. F. Atiyah, R. Bott, and L. Gårding, ?Lacunas for hyperbolic differential operators with constant coefficients. I,? Acta Math.,24, 109?189 (1970). · Zbl 0191.11203
[7] V. M. Barenbaum, ?Chern classes of ample bundles,? Mat. Sb.,85, No. 1, 85?97 (1971). · Zbl 0239.14008
[8] Yu. R. Vainberg, ?Algebraic varieties over fields with differentiation,? Mat. Sb.,80, No. 3, 417?444 (1969).
[9] A. Yu. Geronimus, ?Cohomologies of groups in categories,? Funktsional’. Analiz i Ego Prilozhen.,2, No. 3, 86 (1968).
[10] A. Yu. Geronimus, ?Lie groups and Grothendieck topology,? Uspekhi Mat. Nauk,26, No. 1, 219?220 (1971).
[11] A. Yu. Geronimus, ?Grothendieck topology and representation theory,? Funktsional’. Analiz i Ego Prilozhen.,5, No. 3, 22?31 (1971).
[12] M. Kh. Gizatullin, ?One example of a numerical criterion for ampleness,? Matem. Zametki,5, No. 2, 149?154 (1969).
[13] H. Grauert, ?Über Modifikationen und exzeptionelle analytische Mengen,? Math. Ann.,146, 331?368 (1962). · Zbl 0173.33004
[14] A. Grothendieck, ?The cohomology theory of abstract algebraic varieties,? Proc. Internat. Congr. Mathematicians (Edinburgh, August 14?21, 1958), J. A. Todd (ed.), University Press, Cambridge (1960), pp. 103?118. · Zbl 0119.36902
[15] V. I. Danilov, ?Groups of classes of ideals of a completed ring,? Mat. Sb.,77, No. 4, 533?541 (1968).
[16] V. I. Danilov, ?On Samuel’s conjecture,? Mat. Sb.,81, No. 1, 132?144 (1970).
[17] V. I. Danilov, ?Rings with a discrete group of classes of divisors,? Mat. Sb.,83, No. 3, 372?389 (1970).
[18] I. V. Dolgachev, ?On the purity of the set of points of nonsmoothness of a morphism of schemata,? Dokl. Akad. Nauk SSSR,188, No. 4, 742?744 (1969). · Zbl 0191.51801
[19] I. V. Dolgachev and A. N. Parshin, ?The different and the discriminant of regular mappings,? Matem. Zametki,4, No. 5, 519?524 (1968). · Zbl 0177.24201
[20] J. Dieudonne, ?Algebraic geometry,? Matematika (Periodic Collection of Translations of Foreign Articles),9, No. 1, 54?126 (1962).
[21] Yu. L. Ershov, ?On rational points over Henselian fields,? Algebra i Logika, Seminar,6, No. 3, 39?49 (1967).
[22] O. Zariski, ?Algebraic theory of sheaves,? Matematika (Periodic Collection of Translations of Foreign Articles),4, No. 2, 3?24 (1960).
[23] V. A. Iskovskikh, ?Rational surfaces with a sheaf of rational curves,? Mat. Sb.,74, No. 4, 608?638 (1967).
[24] U. Kal’yulaid, ?On the cohomological dimension of certain quasiprojective varieties,? ENSV Tead. Akad. Toimetised. Füüs., Mat., Izv. Akad. Nauk Éston. SSR, Fiz. Mat.,18, No. 3, 261?272 (1969).
[25] N. M. Katz and T. Oda, ?On the differentiation of de Rham cohomology classes with respect to parameters ? J. Math. Kyoto Univ.,8, 199?213 (1968). · Zbl 0165.54802
[26] D. Mumford, ?The topology of normal singularities of an algebraic surface and a criterion for simplicity Matematika (Periodic Collection of Translations of Foreign Articles),10, No. 6, 3?24 (1966).
[27] Yu. I. Manin, ?Circular fields and modular curves,? Uspekhi Mat. Nauk,26, No. 6, 7?71 (1971).
[28] Yu. I. Manin, ?Algebraic curves over fields with differentiation,? Izv. Akad. Nauk SSSR, Ser. Mat.,22, No. 6, 737?756 (1958).
[29] Yu. I. Manin, ?On ramified coverings of algebraic curves,? Izv. Akad. Nauk SSSR, Ser. Mat.,25, No.6, 789?796 (1961). · Zbl 0192.27001
[30] Yu. I. Manin, ?Algebraic topology of algebraic varieties,? Uspekhi Mat. Nauk,20, No. 6, 3?12 (1965). · Zbl 0141.18202
[31] Yu. I. Manin, ?Lectures on the K-functor in algebraic geometry.? Uspekhi Mat. Nauk,24, No. 5, 3?86 (1969).
[32] Yu. I. Manin, Lectures on Algebraic Geometry. Part I: Affine Schemata [in Russian], Mosk. Univ., Moscow (1970), 132 pp.
[33] Yu. I. Manin, ?Correspondences, motifs, and monoidal transformations,? Mat. Sb.,77, No. 4, 475?507 (1968). · Zbl 0199.24803
[34] M. Miyanishi, ?Homogeneous spaces and first cohomologies of group schemata,? Sagaku,22, No. 4, 252?263 (1970).
[35] B. G. Moishezon, ?On the protective imbeddings of algebraic varieties,? Dokl. Akad. Nauk SSSR,141, No. 3, 555?557 (1961).
[36] B. G. Moishezon, ?Remarks on projective imbeddings of algebraic varieties,? Dokl. Akad. Nauk SSSR.145, No. 5, 996?999 (1962).
[37] B. G. Moishezon, ?Protective criterion for complete abstract algebraic varieties,? Izv. Akad. Nauk SSSR, Ser. Mat.,28, No. 1, 179?224 (1964).
[38] B. G. Moishezon, ?Algebraic analog of compact complex spaces with a sufficiently large field of meromorphic functions. 1,? Izv. Akad. Nauk SSSR, Ser. Mat.,33, No. 1, 174?238 (1969).
[39] B. G. Moishezon, ?Algebraic analog of compact complex spaces with a sufficiently large field of meromorphic functions. 2,? Izv. Akad. Nauk SSSR, Ser. Mat.,33, No. 2, 323?367 (1969). · Zbl 0193.21601
[40] B. G. Moishezon, ?Algebraic analog of compact complex spaces with a sufficiently large field of meromorphic functions. 3,? Izv. Akad. Nauk SSSR, Ser. Mat.,33, No. 3, 506?548 (1969). · Zbl 0193.21601
[41] B. G. Moishezon, ?On algebraic homology classes on algebraic varieties,? Izv. Akad. Nauk SSSR, Ser. Mat.,31, No. 2, 225?268 (1967).
[42] S. P. Novikov, I. I. Pyatetskii-Shapiro, and I. R. Shafarevich, ?Main directions in the development of algebraic topology and algebraic geometry,? Uspekhi Mat. Nauk,19, No. 6, 75?82 (1964). · Zbl 0168.43903
[43] A. N. Parshin, ?On one generalization of the Jacobi variety,? Izv. Akad. Nauk, Ser. Mat.,30, No. 1, 175?182 (1966).
[44] A. N. Parshin, ?Arithmetic on algebraic varieties,? in: Algebra. Topology. Geometry. 1970 [in Russian], Itogi Nauki, VINITI Akad. Nauk SSSR, Moscow (1971), pp. 111?151.
[45] I. I. Pyatetskii-Shapiro and I. R. Shafarevich, ?Galois theory of transcendental extensions and uniformizations ? Izv. Akad. Nauk SSSR, Ser. Mat.,30, No. 3, 671?704 (1966).
[46] J.-P. Serre, ?Coherent algebraic sheaves,? in: Fiber Spaces and Their Applications [in Russian], IL, Moscow (1958), pp. 372?450.
[47] J.-P. Serre, Groupes Algèbriques et Corps de Classes, Publ. Inst. Math. Univ. Nancago, VII., Hermann et Cie., Paris (1959), 202 pp. · Zbl 0097.35604
[48] J.-P. Serre, Cohomologie Galoisienne, Lectures Notes in Math.5, 3rd ed., Springer Verlag, Berlin-Heidelberg-New York (1965), 214 pp.
[49] J.-P. Serre, Algèbre Locale. Multiplicités, Lecture Notes in Math.11, 2nd ed., Springer Verlag, Berlin-Heidelberg-New York (1965), 192 pp.
[50] J. T. Tate, ?Algebraic cohomology classes,? Summer Inst. Algebraic Geometry, Woods Hole, Mass. (1964).
[51] J. T. Tate, ?p-Divisible groups,? Proc. Conf. Local Fields (Driebergen, 1966), Springer Verlag, Berlin-Heidelberg-New York (1967), pp. 158?183.
[52] J. T. Tate, ?Residues of differentials on curves,? Ann. Sci.École Norm. Sup. (4)1, 149?159 (1968). · Zbl 0159.22702
[53] I. R. Shafarevich, ?Principal homogeneous spaces defined over a field of functions,? Tr. Mat. In-ta Akad. Nauk SSSR,64, 316?346 (1961)
[54] I. R. Shafarevich, ?Surfaces with a sheaf of elliptic curves,? in: Algebraic Surfaces [in Russian], Tr. Mat. In-ta Akad. Nauk SSSR,75, 138?152 (1965).
[55] I. R. Shafarevich, ?Fundamentals of algebraic geometry,? Uspekhi Mat. Nauk,24, No. 6, 1?184 (1969). · Zbl 0204.21301
[56] A. M. Shermenev, ?On the motif of a cubic hypersurface,? Izv. Akad. Nauk SSSR, Ser. Mat.,34, No. 3, 515?522 (1970). · Zbl 0234.14013
[57] A. M. Shermenev, ?On the motif of an Abelian variety,? Uspekhi Mat. Nauk,26, No. 3, 215?216 (1971).
[58] M. Schlessinger, ?Functors of Artin Rings,? Trans. Amer. Math. Soc.,130, 208?222 (1968). · Zbl 0167.49503
[59] H. Yanigihara, ?On immersions of algebraic schemes,? Sugaku,20, No. 1, 36?40 (1968).
[60] P. Abellanas, ?Algebraic correspondences,? Rend. Semin. Mat. Univ. e Politecn. Torino,25, No. 1, 75?82 (1965/66).
[61] P. Abellanas, ?Variedades algebraicas totales,? Actas Coloq. Internac. Geometria Algebraica, Madrid (1965), pp. 85?106.
[62] P. Abellanas, ?Sheaves on the total spectrum of a ring,? Rend. Mat. e Applic., 25, No. 1?2, 72?76 (1967).
[63] S. Abhyankar, ?Tame coverings and fundamental groups of algebraic varieties, 1. Branch loci with normalcrossings,? Amer. J. Math.,81, No. 1, 46?94 (1959). · Zbl 0100.16401
[64] S. Abhyankar, ?Tame coverings and fundamental groups of algebraic varieties, 2. Branch curves with higher singularities,? Amer. J. Math.,82, No. 1, 120?178 (1968).
[65] S. Abhyankar, ?Tame coverings and fundamental groups of algebraic varieties, 3. Some other sets of conditions for the fundamental group to be Abelian,? Amer. J. Math.,82, No. 1, 179?190 (1960).
[66] S. Abhyankar, ?Tame coverings and fundamental groups of algebraic varieties, 4. Product theorems,? Amer. J. Math.,82, No. 2, 341?364 (1960).
[67] S. Abhyankar, ?Tame coverings and fundamental groups of algebraic varieties. 5. Three cuspidal plane quartics,? Amer. J. Math.,82, No. 2, 365?373 (1960).
[68] S. Abhyankar, ?Tame coverings and fundamental groups of algebraic varieties. 6. Plane curves of order at most four,? Amer. J. Math.,82, No. 2, 374?388 (1960).
[69] S. Abhyankar, ?Ramification theoretic methods in algebraic geometry,? Ann. Math. Studies, No. 43 (1959), 96 pp. · Zbl 0101.38201
[70] Algebraic Geometry. Pap. Bombay Colloq., 1968, London, Oxford Univ. Press, (1969), 426 pp.
[71] A. Ahman and S. Kleiman, ?IntroductiontoGrothendieck duality theory,? Lect. Notes Math., No. 146 (1970), 189 pp.
[72] M. André, ?Méthode simpliciale en algèbre homologique et algèbre commutative,? Lect. Notes in Math.,32, (1967), 122 pp. · Zbl 0154.01402
[73] A. Andreotti and E. Bombieri, ?Sugli omeomorfismi delle varietà algebriche,? Ann. Scuoli Norm. Super. Pisa. Sci. Fis. et Mat.,23, No. 3, 431?450 (1969). · Zbl 0184.24503
[74] A. Andreotti and P. Salmon, ?Anelli con unica decomposibilità in fattori primi ed un problema di intersezioni complete,? Monatsh. Math.,61, No. 2, 97?142 (1957). · Zbl 0079.15002
[75] S. Arima, ?Differential forms of the second kind on algebraic varieties with certain imperfect ground fields,? Proc. Jap. Acad.,40, No. 9, 687?690 (1964). · Zbl 0204.21401
[76] S. Arima, ?Differential forms of the first and second kind on modular algebraic varieties,? J. Math. Soc. Jap.,16, No. 2, 102?108 (1964). · Zbl 0127.37704
[77] M. Artin, ?Some numerical criteria for contractability of curves on algebraic surfaces,? Amer. J. Math.,84, No. 3, 485?496 (1962). · Zbl 0105.14404
[78] M. Artin, ?Grothendieck topologies,? Lectures Notes Harvard Univ., 1962, mimeographed notes.
[79] M. Artin, ?Étale cohomology of schemes,? Lect. Notes. Amer. Math. Soc. and Summer Inst. Algebr. Geometry, Woods Hole, Mass., (1964), pp. 1?9.
[80] M. Artin, ?On algebraic extensions of local rings,? Simpos. Internaz. Geometria Algebrica, Rome, 1965, Rome (1967), pp. 33?37.
[81] M. Artin, ?Etale coverings of schemes over Hensel rings,? Amer. J. Math.,88, No. 4, 915?934 (1966). · Zbl 0148.41602
[82] M. Artin, ?Lifting of two-dimensional singularities to characteristic zero,? Amer. J. Math.,88, No. 4, 747?762 (1966). · Zbl 0146.17101
[83] M. Artin, ?The etale topology of schems,? Proc. Internat. Congr. Mathematicians Moscow, 1966 [in Russian], Izd. ?Mir,? Moscow (1968), pp. 44?56.
[84] M. Artin, ?The implicit function theorem in algebraic geometry,? Algebr. Geom. London1969, 14?34.
[85] M. Artin, ?Algebraic approximation of structures over complete local rings,? Publs. Math. Inst. Hautes Études Scient.,36, 23?58 (1969). · Zbl 0181.48802
[86] M. Artin, ?Algebraization of formal moduli. I. Global analysis,? in: Collection of Mathematical Papers in Honor of K. Kodaira, Univ. of Tokyo Press, Tokyo (1970).
[87] M. Artin, ?Algebraization of formal moduli. II: Existence of modifications,? Ann. Math.,91, No. 1, 88?135 (1970). · Zbl 0177.49003
[88] M. Artin and B. Mazur, ?Homotopy of varieties in the etale topology,? Proc. Conf. Local Fields, Driebergen, 1966, Berlin-Heidelberg-New York (1967), pp. 1?15. · Zbl 0188.53402
[89] M. Artin and B. Mazur, ?Etale homotopy,? Lect. Notes Math.,100 (1969), 169 pp.
[90] Y. Asaeda, ?Absolute simplicity of subvarieties and their modules of differentials,? J. Fac. Sci. Univ. Tokyo. Sec. I,13, No. 2, 125?128 (1966). · Zbl 0148.41703
[91] M. Atiyah and W. Hodge, ?Integrals of the second kind on an algebraic variety,? Ann. Math.,62, No. 1, 56?91 (1955). · Zbl 0068.34401
[92] B. Auslander, ?The Brauer group of a ringed space,? J. Algebra,4, No. 2, 220?273 (1966). · Zbl 0144.03401
[93] M. Auslander, ?On the purity of the branch locus,? Amer. J. Math.,84, No. 1, 116?125 (1962). · Zbl 0112.13101
[94] M. Auslander and D. Buchsbaum, ?Homological dimension in local rings,? Trans. Amer. Math. Soc.,85, No. 2, 390?405 (1957). · Zbl 0078.02802
[95] M. Auslander and O. Goldman, ?The Brauer group of a commutative ring,? Trans. Amer. Math. Soc,97, No. 3, 367?409 (1960). · Zbl 0100.26304
[96] J. Ax, ?Injective endomorphisms of varieties and schemes,? Pacif. J. Math.,31, No. 1, 1?7 (1969). · Zbl 0194.52001
[97] J. Ax, ?The elementary theory of finite fields,? Ann. Math.,88, No. 2, 239?271 (1968). · Zbl 0195.05701
[98] L. B?descu and M. Moroianu, ?Caraeterizarea morfismelor unei scheme in proj S si aplicatii la fascicule ample,? Studii si cercetari Mat. Acad. RSR,21, No. 10, 1149?1463 (1969).
[99] L. B?descu and M. Moroianu, ?Sur une classe de morphismes de préschémas,? C. r. Acad. Sci.,268, No. 26, A1609-A1611 (1969). · Zbl 0174.52701
[100] L. B?descu and M. Moroianu, ?Quelques propriétés d’une classe de morphismes de préschémas,? C. r. Acad. Sci.,269, No. 6, A279-A280 (1969).
[101] S. Baldassarri-Ghezzo, C.Margaglio, and T. Millevoi, ?Introduzione ai metodi délla geometria algebrica,? Roma, Ed. Cremonese,(1967), 295 pp. · Zbl 0172.22402
[102] S. Baldassarri-Ghezzo, ?Sullelocalizzazione di ideali e moduli di tipo finito privi di torsione, (Proprietà del chiuso di un fiscio algebrico coerente e lisciol),? Rend.Semin. Mat. Univ. Padova, 1967,39 205?218 (1968).
[103] S. Baldassarri-Ghezzo, ?Proprietà di fasci algebrici coerenti e lisci su varietà algebriche affini ad algebra fattoriale,? Rend. Semin. Mat. Univ. Padova, 1968,41, 12?30 (1969). · Zbl 0186.26001
[104] S. Baldassarri-Ghezzo, ?Proprietà die fasci algebrici coerenti e lisci su varieta algebriche affini normali,? Rend. Semin. Mat. Univ. Padova, 1968,41, 31?42 (1969).
[105] S. Baldassarri-Ghezzo, C. Margaglio, and T. Millevoi, ?Considerazioni sulla conferenza tenuta da M. Baldassari a Torino nel 1961, in: ?Osservazioni sulla struttura dei fasci lisci,? Rend. Semin. Mat. Univ. Padova,36, 277?284 (1966). · Zbl 0146.17204
[106] M. Baldassarri, ?Osservazioni sulla struttura dei fasci lisci,? Atti convegno internaz. Geom. Algebrico. Torino, 1961, 49?56 (1962).
[107] C. B?nic? and O. St?n?sil?, ?Some remarks on the finite morphisms,? Rev. Roum. Mat. Pures et Appl.,12, No. 10, 1425?1428 (1967).
[108] W. Barth, ?Transplanting cohomology classes in complex-projective space,? Amer. J. Math.,92, No. 4, 951?967 (1970). · Zbl 0206.50001
[109] C. Barton, ?Contributions to the theory of ample vector bundles,? Doct. Diss. Columbia Univ., (1968), 48 pp. ’Diss. Abstrs. Int.,B32, No. 1, 423?424 (1971).
[110] L. Bégueri, ?Schéma d’automorphismes Application à l’étude d’extensions finies radicielles,? Bull. Sci. Math.,93, Nos. 3?4, 89?111 (1969). · Zbl 0186.35502
[111] R. Berger, R. Kiehl, E. Kunz, and H.-J. Nastold, ?Differentialrechnung in der analytischen Geometrie,? Lect. Notes Math., No. 38 (1967), 134 pp. · Zbl 0163.03202
[112] R. Berndt, ?Über arithmetische elliptische Differentiale 1,? Gattung. Abh. Math. Semin. Univ. Hamburg,35, Nos. 3?4, 252?253 (1971). · Zbl 0327.12014
[113] P. Berthelot, ?Cohomologie p-cristalline des schémas: relevement de la caracteristique p à la caractéristique 0,? C. r. Acad. Sci.,269, No. 7, A297-A300 (1969). · Zbl 0179.26202
[114] P. Berthelot, ?Cohomologie p-cristalline des schémas: variantes sur les notions de connexion et de stratification,? C. r. Acad. Sci.,269, No. 9, A357-A360 (1969). · Zbl 0179.26203
[115] P. Berthelot, ?Cohomologie p-cristalline des schémas: comparaison avec la cohomologie de de Rham,? C. r. Acad. Sci.,269, No. 10, A397-A400 (1969). · Zbl 0179.26301
[116] P. Berthelot, ?Cohomologie cristalline locale,? C. r. Acad. Sci.,272, A42-A45 (1971). · Zbl 0205.25301
[117] P. Berthelot, ?Sur le morphisme trace en cohomologie cristalline,? C. r. Acad. Sci.,272, No. 2, A141-A144 (1971). · Zbl 0205.25302
[118] P. Berthelot, ?La dualité de Poincaré en cohomologie cristalline,? C. r. Acad. Sci.,272, No. 3, A254-A257 (1971). · Zbl 0205.25401
[119] P. Berthelot, ?Quelques relations entre les Ext cristallines et les Ext de complexes d’opérateurs différentiels d’ordre ?1,? C. r. Acad. Sci.,272, No. 20, A1314-A1317 (1971). · Zbl 0214.19901
[120] P. Berthelot, ?Classe de cohomologie associééà un cycle non singulier en cohomologie cristalline,? C. r. Acad. Sci.,272, No. 21, A1397-A1400 (1971). · Zbl 0214.19902
[121] P. Berthelot, ?Une formule de razionalité pour la fonction? des schémas propres et lisses sur un corps fini,? C. r. Acad. Sci.,272, No. 24, A1574-A1577 (1971). · Zbl 0214.20001
[122] P. Berthelot and L. Illusie, ?Classes de Chern en cohomologie cristalline,? C. r. Acad. Sci.,270, No. 25, A1695-A1697 (1970). · Zbl 0198.26201
[123] P. Berthelot and L. Illusie, ?Classes de Chern en cohomologie cristalline,? C. r. Acad. Sci.,270, No. 26, A1750-A1752 (1970). · Zbl 0198.26201
[124] J.-E. Bertin, ?Familles algébriques de classes de diviseurs de type linéaire commutatif,? C. r. Acad. Sci.,260, No. 2, A5169-A5172 (1965). · Zbl 0132.41502
[125] J.-E. Bertin, ?Variete de Picard de type lineaire commutatif,? C. r. Acad. Sci.,262, No. 11, A624-A625 (1966). · Zbl 0171.19502
[126] J.-E. Bertin, ?Quelques propriétés de la variété de Picard de type linéaire commutatif,? C. r. Acad. Sci.,264, No. 16, A736-A737 (1967). · Zbl 0163.15302
[127] J.-E. Bertin, ?Variété de Picard de type linéaire commutatif,? Bull. Soc. Math. France,95, No. 11, (1967), 103 pp.
[128] A. Bialynicki-Birula, ?Remarks on relatively minimal models of fields of genus 0, I.? Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. et Phys.,15, No. 5, 301?304 (1967). · Zbl 0173.22803
[129] A. Bialynicki-Biruia, ?Rationally trivial homogeneous principal fibrations of schemes,? Invent. Math.,11, No. 3, 259?262 (1970). · Zbl 0213.47301
[130] S. Bloch and D. Gieseker, ?The positivity of the Chern classes of an ample vector bundle,? Invent. Math.,12, No. 2, 112?117 (1971). · Zbl 0212.53502
[131] S. Bombieri, ?Varietà algebriche omeomorfe,? Sympos. Math. 1st. Naz. Alta Mat. 1968, Vol. 2, London-New York (1969), pp. 353?356.
[132] M. Bonardi, ?Un’osservazione sopra l’idéale di una varietà algebrica non singulare,? Boll.Unione Mat. Ital.,22, No. 4, 451?455 (1967).
[133] A. Borel, ?Injective endomorphisms of algebraic varieties,? Arch. Math.,20, No. 5, 531?537 (1969). · Zbl 0189.21402
[134] M. Borelli, ?Divisoral varieties,? Pacif. J. Math.,13, No. 2, 375?388 (1963). · Zbl 0123.38102
[135] M. Borelli, ?Some results on ampleness and divisorial schemes,? Pacif. J. Math.,23, No. 2, 217?227 (1967). · Zbl 0156.41103
[136] M. Borelli, ?Affine complements of diviros,? Pacif. J. Math.,31, No. 3, 595?607 (1969). · Zbl 0201.23502
[137] J.-F. Boutot, ?Groupe de Picard local d’un anneau hensélien,? C. r. Acad. Sci.,272, No. 19, A1248-A1250 (1971). · Zbl 0222.13022
[138] L. Breene, ?On a nontrivial higher extension of representable abelian sheaves,? Bull. Amer. Math. Soc.,75, No. 6, 1249?1253 (1969). · Zbl 0184.46602
[139] A. Brezuleanu, ?Sur un critère de lissité formelle. Sur la descente de la lissité formelle,? C. r. Acad. Sci.,271, No. 6, A341-A344 (1970). · Zbl 0203.34802
[140] A. Brezuleanu, ?Sur les morphismes formellement non ramifiés,? Rev. Roum. Math. Pures et Appl.,15, No. 4, 481?486 (1970). · Zbl 0203.05003
[141] A. Brezuleanu, ?Sur un critère de ’lissité’ formelle,? C. r. Acad. Sci.,269, No. 20, A944-A945 (1969). · Zbl 0183.04002
[142] A. Brezuleanu, ?Note on formal smoothness and differentials,? Rev. Roum. Math. Pures et Appl.,13, No. 7, 949?960 (1968). · Zbl 0174.33404
[143] V. Brînz?nescu, ?Caracterizarea imersiilor unei scheme in Proj (S),? Stud. si cerc. Mat.,22, No. 8, 1155?1158 (1970).
[144] W. de Bruin, ?Une forme algébrique du théorème de Zariski pour?l,? C. r. Acad. Sci.,272, No. 12, A769-A771 (1971).
[145] I. Bucur, ?Sur la formule de Weil en cohomologie étale,? Rev. Roum. Math. Pures et Appl.,12, No. 9, 1145?1147 (1967).
[146] L. Budach, ?Erweiterungstheorie der Grellschen Präschemata,? Math. Nachr.,33, No. 6, 339?380 (1963). · Zbl 0114.02303
[147] L. Budach and K. Hasse, ?Noethersche Integritätsbereiche mit offenem normalem Ort,? Math. Nachr., 39, Nos. 1?3, 135?160 (1969). · Zbl 0323.13009
[148] P. Cartier, ?Questions de rationalité des diviseurs en géométrie algébrique,? Bull. Soc. Math. France,86, No. 3, 177?251 (1958). · Zbl 0091.33501
[149] P. Cartier, ?Sur un théorème de Snapper,? Bull. Soc. Math. France,88, No. 3, 333?343 (1960). · Zbl 0146.42501
[150] P. Cartier, ?Equivalence linéaire des ideaux de polynomes,? Semin. Bourbaki. Secrét. Math.,17, No. 2, 283-01?283-11 (1964?1965).
[151] S. Chase, D. Harrison, and A. Rosenberg, ?Galois theory and Galois cohomology of commutative rings,? Mem. Amer. Math. Soc., No. 52, 15?33 (1965). · Zbl 0143.05902
[152] S. Chase and A. Rosenberg, ?Amitsur cohomology and the Brauer group,? Mem. Amer. Math. Soc., No. 52, 34?79 (1965). · Zbl 0143.06001
[153] S. Chase and M. Sweedler, Hopf algebras and Galois theory, Berlin, Springer, (1969), 133 pp. · Zbl 0197.01403
[154] C. Chevalley, Fondements de la géométrie algébrique, Paris, Secrétariat Math., (1958), 222 pp.
[155] C. Chevalley, ?Sur la théorie de la variété de Picard,? Amer. J. Math.,82, No. 3, 435?490 (1960). · Zbl 0127.37701
[156] W.-L. Chow, ?On the protective embedding of homogeneous varieties,? Algebra Geometry and Topology, Princeton, N. J., Univ. Press (1957), pp. 122?128.
[157] W.-L. Chow, ?On the theorem of Bertini for local domains,? Proc. Nat. Acad. Sci., USA,44, No. 6, 580?584 (1958). · Zbl 0099.16002
[158] W.-L. Chow, ?On the connectedness theorem in algebraic geometry,? Amer. J. Math.,81, No. 4, 1033?1074 (1959). · Zbl 0192.26806
[159] W.-L. Chow and J. Igusa, ?Cohomology theory of varieties over rings,? Proc. Nat. Acad. Sci. USA,44, No. 12, 1244?1252 (1958). · Zbl 0096.36002
[160] H. Cohen, ?Un faisceau qui ne peut pas être détordu universellement,? C. r. Acad. Sci.,272, No. 12, A799-A802 (1971). · Zbl 0236.14010
[161] G. Dantoni, ?Ideali e varietá algebriche,? Univ. e Politecn,? Torino. Rend. Sem. Mat.,20, 149?156 (1960?1961).
[162] P. Deligne, ?Théorème de Lefschetz et critères de degenerescence de suites spectrales,? Publs. Math. Inst. Hautes Études Scient., No. 35, 259?278 (1968?1969).
[163] P. Deligne, ?Equations différentielles à points singuliers réguliers,? Lect. Notes. Math., No. 163, (1970), 133 pp.
[164] P. Deligne, ?Formes modulaires et représentationsl-adiques,? Lect. Notes. Math., No. 179, 139?172 (1971). · Zbl 0206.49901
[165] P. Deligne, ?Variétés unirationnelles non rationnelles,? Semin. Bourbaki, 24 année (1971?1972), pp. 402/01?402/12.
[166] P. Deligne, and D. Mumford, ?The irreducibility of the space of curves of given genus,? Publs. Math. Inst. Hautes Études Scient., No. 36, 75?109 (1969). · Zbl 0181.48803
[167] M. Demazure, ?Motifs des variétés algébriques,? Lect. Notes Math., No. 180, 19?38 (1971).
[168] M. Demazure and P. Gabriel, ?Groupes algébriques. 1. Géométrie algébrique-généralités, groupes commutatifs,? Massonet Cie., Paris, North-Holland Publ. Co., Amsterdam (1970), 700 pp.
[169] M. Demazure and A. Grothendieck, ?Schémas en groupes 1. Propriétés générales des schémas en groupes,? Lect. Notes Math., No. 151 (1970), 562 pp.
[170] M. Demazure and A. Grothendieck, ?Schémas en groupes 2. (SGA 3). Groupes de type multiplicatif, et structures des schémas en groupes généraux,? Lect. Notes Math., No. 152 (1970), 654 pp.
[171] M. Demazure and A. Grothendieck, ?Schémas en groupes 3. (SGA 3). Structure des schémas en groupes réductifs,? Lect. Notes Math., No. 153 (1970), 529 pp.
[172] J. Dieudonné, ?Group schemes and formal groups,? Actas Coloq. Internac. Geometria Algebraica Madrid, 1965, Madrid (1965), pp. 57?67.
[173] J. Dieudonné, ?Algebraic geometry,? Advan. Math.,3, No. 3, 233?321 (1969). · Zbl 0185.49102
[174] J. Dieudonné, ?Fondements de la géometrie algébrique moderne,? Advan. Math.,3, No. 3, 322?413 (1969). · Zbl 0185.49201
[175] Dix Exposés sur la Cohomologie des Schémas (Advanced Stud. Pure Math., Vol. 3), North-Holland Publ. Co., Amsterdam, Masson et Cie., Paris (1968), 386 pp.
[176] A. Doady, ?Détermination d’un groupe de Galois,? C. r. Acad. Sci.,258, No. 22, A5305-A5308 (1964).
[177] D. Dobbs, ?Cech cohomological dimensions for commutative rings,? Lect. Notes Math., No. 147 (1970), 179 pp.
[178] P. Dolbeault, ?Une géneralization de la notion de diviseur,? Atti Convegno Internaz. Geom. Algebraico, Torino, 1961, Torino (1962).
[179] I. V. Dolgachev (Dolga?ev), ?On the purity of the degeneration loci of families of curves,? Invent. Math.,8, No. 1, 34?54 (1969). · Zbl 0176.18503
[180] M. Duma, ?Observatii asupra conexiuni spectrului primi,? Studii si Cercetari Mat. Acad. RSR,21, No. 1, 17?22 (1969).
[181] B. Dwork, ?On the zeta-function of a hyper surface,? Publs. Math. Inst. Hautes Études Scient., No. 12, 5?68 (1962). · Zbl 0173.48601
[182] G. Edmunds, ?Coverings of node curves,? J. London Math. Soc.,1, No. 3, 473?479 (1969). · Zbl 0181.48902
[183] F. Elsein, ?Residus en géométrie algébrique,? C. r. Acad. Sci.,272, No. 13, A878-A881 (1971).
[184] P. Falb, ?A note on coverings over imperfect ground fields,? Amer. J. Math.,88, No. 2, 447?453 (1966). · Zbl 0141.37501
[185] D. Ferrand, ?Suite régulière et intersection complète,? C. r. Acad. Sci.,264, No. 10, A427-A428 (1967). · Zbl 0154.03801
[186] D. Ferrand, ?Epimorphismes d’anneaux a source noetherienne et monomorphismes de schémas,? C. r. Acad. Sci.,266, No. 6, A319-A321 (1968). · Zbl 0177.06401
[187] J. Fogarty, ?Truncated Hilbert functors,? J. Reine und Angew. Math.,234, 65?68 (1969). · Zbl 0197.17101
[188] J. Fogarty, ?Algebraic families on algebraic surface,? Amer. J. Math.,90, No. 2, 511?521 (1968). · Zbl 0176.18401
[189] J. Fogarty, ?Fixed point schemes,? Bull. Amer. Math. Soc.,77, No. 2, 203?204 (1971). · Zbl 0217.04802
[190] J. Fogarty, ?Universal Weil divisors,? J. Reine und Angew. Math.250, 141?152 (1971). · Zbl 0241.14006
[191] W. Fulton, ?The fundamental group of an algebraic curve,? Doct. Diss. Princeton, 1966, 71 pp. Dissert. Abstrs.,B27, No. 6 2025 (1966).
[192] W. Fulton, ?Hurwitz schemes and irreducibility of moduli of algebraic curves,? Ann. Math.,90, No. 3, 542?575 (1969). · Zbl 0194.21901
[193] P. Gabriel, ?Des catégories abélienes,? Bull. Soc. Math. France,90, No. 3, 323?448 (1962). · Zbl 0201.35602
[194] P. Gabriel, ?Le théoréme de Serre,? Sémin. C. Chevalley, Ecole norm. Supér., 1958?1959, 3-e année. Paris (1960), pp. 2/1?2/8.
[195] G. Galbura, Corpuri di Functii Algebrice si Varietati Algebrice, Bacharest, (1961), 180 pp.
[196] J. Gamst, ?Quaternions généralisés,? C. r. Acad. Sci.,269, No. 14, A560-A562 (1969). · Zbl 0197.03202
[197] F. Gherardelli, ?Un teorema di Lefschetz sulle intersezioni complete,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,28, No. 5, 610?614 (1960). · Zbl 0099.15802
[198] F. Gherardelli, ?Le ipotesi del teorema di Severi-Lefschetz sulle varietá intersezione completa,? Atti Semin. Mat. Fis. Univ. Modena,13, 1?3 (1964). · Zbl 0125.38701
[199] J. Giraud, ?Groupe de Picard, anneaux factoriels,? Semin. Bourbaki, Annee15, 248/01?248/13 (1962?1963).
[200] J. Giraud, ?Analysis situs,? Semin. Bourbaki. Année 15, 256/01?256/11 (1962?1963);Dix Exposes Cohomol. Schémas. Amsterdam-Paris (1968), pp. 1?12.
[201] J. Giraud, ?Méthode de la descente,? Bull. Soc. Math. France, Mem., No. 2 (1964), 150 pp.
[202] J. Giraud, ?Cohomologie non abélienne, prèliminaires,? C. r. Acad. Sci.,260, No. 9, A2392-A2394 (1965). · Zbl 0135.02301
[203] J. Giraud, ?Cohomologie non abélienne,? C. r. Acad. Sci.,260, No. 10, A2666-A2668 (1965). · Zbl 0135.02401
[204] J. Giraud, ?Cohomologie non abéliene,? (Grundlehren. Math. Wiss. Einzeldarstell., 179), Springer, Berlin e.a. (1971), 467 pp.
[205] R. Goblot, ?Catégories modulaires commutatives qui sont des catégories de faisceaux quasi cohérents sur un sché’ma,? C. r. Acad. Sci.,268, No. 2, A92-A95 (1969). · Zbl 0179.03605
[206] J. Goodman, ?Affine open subsets of algebraic varieties and ample divisors,? Ann. Math.,89, 160?183 (1970). · Zbl 0159.50504
[207] J. Goodman and R. Hartshorne, ?Schemes with finite dimensional cohomology groups,? Amer. J. Math.,91, 258?266 (1969). · Zbl 0176.18303
[208] R. Goren, ?Characterization and algebraic deformations of projective space,? J. Math. Kyoto Univ.,8, No. 1, 41?47 (1968). · Zbl 0213.47802
[209] M. J. Greenberg, ?Schemata over local rings,? Ann. Math.,73, No. 3, 624?648 (1961). · Zbl 0115.39004
[210] M. J. Greenberg, ?Schemata over local rings. II,? Ann. Math.,78, No. 2, 256?266 (1963). · Zbl 0126.16704
[211] M. J. Greenberg, ?Algebraic rings,? Trans. Amer. Math. Soc.,111, No. 3, 472?481 (1964). · Zbl 0135.21503
[212] M. J. Greenberg, ?Perfect closures of rings and schemes,? Proc. Amer. Math. Soc.,16, 313?317 (1965). · Zbl 0136.16102
[213] M. J. Greenberg, ?Rational points in Henselian discrete valuation rings,? Bull. Amer. Math. Soc.,72, No. 4, 713?714 (1966). · Zbl 0142.00901
[214] M. J. Greenberg, ?Rational points in Henselian discrete valuation rings,? Publ. Math. Inst. Hautes Études Scient., No. 31, 563?568 (1966).
[215] P. Griffiths, ?Some transcendental methods in the study of algebraic cycles,? Lect. Notes Math., No. 185, 1?47 (1971).
[216] M. Gröbner, ?Moderne algebraische Geometrie,? Springer, Vienna (1949), 212 pp. · Zbl 0033.12706
[217] A. Grothendieck, ?Sur les faisceaux algébriques et les faisceaux analytiques coherents,? Semin. Cartan. No. 2, 1?16 (1956?1957).
[218] A. Grothendieck, ?Théorémès de dualité pour les faisceaux algebriques coherent,? Semin. Bourbaki. Année 9, 1956?1957, 149/1?149/25 (1959).
[219] A. Grothendieck, ?Géométrie formelle et géométrie algébrique,? Semin. Bourbaki. Secrét. Math., Année 11, 1958?1959, 182/01?182/28 (1959).
[220] A. Grothendieck, ?Technique de descente et theorems d’existence en geometry algebrique. I. Generalités. Déscente par morphismes fidelement plats,? emin. Bourbaki. Secrét. Math., Annee 12, 1959?1960, 190/01?190/29 (1960).
[221] A. Grothendieck, ?Technique de déscente et théorèms d’existence en géometrie algébrique. II. Le théoréme d’existence en théorie formelles des modules,? Semin. Bourbaki. Secrét. Math., 1959?1960, 195/01?195/22 (1960).
[222] A. Grothendieck, ?Techniques de constructions et théorèms d’existence en géometrie algébrique. III. Préschemes quotients,? Semin. Bourbaki. Secrét. Math., 1960?1961, Année 13, Paris (1961), pp. 212/02?212/20.
[223] A. Grothendieck, ?Techniques de construction et théorèmes d’existence en géometrie algébrique. IV. Les schémas de Hilbert,? Semin. Bourbaki. Secrét. Math., 1960?1961, Année 13, Paris (1961), pp. 221/01?221/28.
[224] A. Grothendieck, ?Technique de déscente et théorèmes d’existence en géometrie algébrique. V. Les schémas de Picard. Théorèmes d’existence,? Semin. Bourbaki, Secrét. Math., 1961?1962, Année 14, Paris (1962), pp. 232/01?232/19.
[225] A. Grothendieck, ?Technique de déscente et théorèmes d’existence en géometrie algébrique. VI. Proprietes generales,? Semin. Bourbaki. Secrét Math., 1961?1962, Annee 14, Paris (1962), pp. 236/01?236/23.
[226] A. Grothendieck, ?Fondements de Géometrie algébrique,? Secrét. Math. Paris (1962).
[227] A. Grothendieck, ?Cohomologie locale des faisceaux cohérents etthéorèmes deLefschetz locaux et globaux (SGA 2),? (Advanced Stud. Pure Math., vol. 2), North Holland Publ. Co., Amsterdam; Masson et Cie., Paris (1968), 287 pp.
[228] A. Grothendieck, ?Formule de Lefschetz et rationalité de fonctions L,? Semin. Bourbaki. Secret. Math., 1964/65, Année 17, Paris (1966), pp. 279/01?279/15.
[229] A. Grothendieck, ?Le groupe de Brauer. 1,? Semin. Bourbaki. Secrét. Math., 1964?1965, Année 17, No. 3, 290/01?290/21 (1966).
[230] A. Grolendieck, ?Le groupe de Brauer. 2,? Semin. Bourbaki. Secrét. Math., 1965?1966, Année 18, 297/01?297/21; DixExposes Cohom. Schémas. Amsterdam-Paris (1968), pp. 67?87.
[231] A. Grothendieck, ?Le groupe de Brauer. 3. Exemples et complément? Dix Exposes Cohom. Schémas. Amsterdam-Paris (1968), pp. 88?188.
[232] A. Grothendieck, ?On the de Rham cohomology of algebraic varieties,? Publs. Math. Inst. Hautes Études Scient., No. 29, 351?359 (1966). · Zbl 0145.17602
[233] A. Grothendieck, ?Un théorème sur les homomorphismes de schémas abéliens,? Invent. Math.,2, No. 1, 59?78 (1966). · Zbl 0147.20302
[234] A. Grothendieck, ?Local cohomology,? Lect. Notes. Math., No. 41 (1967), 106 pp.
[235] A. Grothendieck, ?Catégories cofibrées additives et complexe cotangent relatif,? Lect. Notes Math., No. 79 (1968), 167 pp.
[236] A. Grothendieck, ?Classes de Chern et representations linéaires des groupes discrets,? Dix Exposes Cohom. Schémas, Amsterdam-Paris (1968), pp. 215?305.
[237] A. Grothendieck, ?Crystals and the de Rham cohomology of schemes,? Dix Exsposes Cohom. Schémas. Amsterdam-Paris (1968), pp. 306?358.
[238] A. Grothendieck, ?Standard conjectures on algebraic cycles,? Algebr. Geom., London (1969), pp. 193?199.
[239] A. Grothendieck, ?Representations lineaires et compactification profinie des groupes discrets,? Manuscr. Math.,2, No. 4, 375?396 (1970). · Zbl 0239.20065
[240] A. Grothendieck and J. Dieudonné, ?Eléments de géometrie algébrique. I. Le langage des schémas,? Publs. Math. Inst. Hautes Études Scient., No. 4 (1960), 228 pp.
[241] A. Grothendieck and J. Dieudonné, ?Eléments de géometrie algébrique. 2. Étude globale elémentaire de quelques classes de morphismes,? Publs. Math. Inst. Hautés Études Scient., No. 8 (1961), 224 pp.
[242] A. Grothendieck and J. Dieudonné, ?Eléments de géometrie algébrique. 3. Étude cohomologique des faisceaux cohérents (Premiere partie),? Publs. Math. Inst. Hautes Études Scient., No. 11 (1961), 168 pp.
[243] A. Grothendieck and J. Dieudonné, ?Eléments de géometrie algébrique. 3. Étude cohomologique de faisceaux cohérents (Second partie),? Publs. Math. Inst. Hautes Études Scient, No. 17 (1962), 92 pp.
[244] A. Grothendieck and J. Dieudonné, ?Eléments de géometrie algébrique. 4. Étude locale des schémas et des morphismes de schémas (Première partie),? Publs. Math. Inst. Hautes Études Scient., No. 20 (1964), 260 pp.
[245] A. Grothendieck and J. Dieudonné, ?Eléments de géometrie algébrique. 4. Étude locale des schemas et des morphismes de schémas (Second partie),? Publs. Math. Inst. Hautes Études Scient., No. 24 (1964), 232 pp.
[246] A. Grothendieck and J. Dieudonné, ?Eléments de géometrie algébrique. 4. Étude locale des schémas et des morphismes des schémas (Troisième partie),? Publs. Math. Inst. Hautes Études Scient., No. 28 (1966), 256 pp.
[247] A. Grothendieck and J. Dieudonné, ?Eléents de géometrie algébrique. 4. Étude locale des schémas et des morphismes des schémas (Quatrième partie),? Publs. Math. Inst. Hautes Études. Scient., No. 32 (1967), 360 pp.
[248] A. Grothendieck and J. Dieudonné, ?Eléments de géometrie algébrique. I. Le langage de schémas (Grundlehren Math. Wiss. Einzeldarstell., 166),? Springer, Berlin e.a. (1970), 466 pp.
[249] A. Grothendieck and J. P. Murre, ?The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme,? Lect. Notes Math., No. 208 (1971), 133 pp. · Zbl 0216.33001
[250] A. Grothendieck and H. Seydl, ?Platitude d’une adhérence schématique et lemme de Hironoka généralise,? Manuscr. Math.,5, No. 4, 323?341 (1971). · Zbl 0223.14010
[251] M. Haque, ?Foncteur de préfaisceaux et foncteur faisceau associés à un anneau commutatifs,? C. r. Acad. Sci.,270, A1357-A1360 (1970). · Zbl 0193.34903
[252] M. Haque, ?Remarques sur les schémas affines,? C. r. Acad. Sci.,270, A1649-A1652 (1970).
[253] M. Haque, ?Ouverts quasi-compacts des schémas affines,? C. r. Acad. Sci.,271, No. 3, A117-A119 (1970).
[254] M. Haque, ?Localisations et schémas affinés,? Publs. Dép. Math.,7, No. 2, 1?114 (1971).
[255] M. Hakim, ?Schémas relatifs,? Thésis. Doct. Sci. Math. Fac. Sci. Orsay, Univ. Paris (1967), 86 pp.
[256] R. Hartshorne, ?Complete intersections and connectedness,? Amer. J. Math.,84, No. 2, 497?508 (1962). · Zbl 0108.16602
[257] R. Hartshorne, ?Connectedness of the Hilbert scheme,? Publs. Math. Inst. Hautes Études Scient., No. 29, 261?304 (1966). · Zbl 0171.41502
[258] R. Hartshorne, ?Ample vector bundles,? Publs. Math. Inst. Hautes Études Scient., No. 29, 319?350 (1966). · Zbl 0173.49003
[259] R. Hartshorne, ?Residues and duality,? Lect. Notes Math., No. 20 (1966), 413 pp.
[260] R. Hartshorne, ?Cohomological dimension of algebraic varieties,? Ann. Math.,88, No. 3, 403?450 (1968). · Zbl 0169.23302
[261] R. Hartshorne, ?Ample subvarieties of algebraic varieties,? Lect. Notes Math., No. 156 (1970), 256 pp. · Zbl 0208.48901
[262] R. Hartshorne, ?Affine duality and cofiniteness,? Invent. Math.,9, No. 2, 145?164 (1970). · Zbl 0196.24301
[263] R. Hartshorne, ?Ample vector bundles on curves,? Nagoya Math., J.,43, No. 1, 73?89 (1971). · Zbl 0218.14018
[264] R. Hartshorne, ?Cohomology of noncomplete algebraic varieties,? Compos. Math.,23, No. 3, 257?264 (1971). · Zbl 0221.14014
[265] M. Herrera and D. Liebermann, ?Duality and the de Rham cohomology of infinitesimal neighbourhoods, Invent. Math.,13, Nos. 1?2, 97?124 (1971). · Zbl 0218.32005
[266] H. Hironaka, ?A note on algebraic geometry over ground rings. The invariance of Hubert characteristic functions under specialisation process,? Ill. J. Math.,2, No. 3, 355?366 (1958). · Zbl 0099.15701
[267] H. Hironaka, ?A generalized theorem of Krull-Seidenberg on parametrised algebras of finite type,? Amer. J. Math.,82, No. 4, 831?850 (1960). · Zbl 0104.03402
[268] H. Hironaka, ?An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures,? Ann. Math.,75, No. 1, 190?208 (1962). · Zbl 0107.16001
[269] H. Hironaka, ?Resolution of singularities of an algebraic variety over a field of characteristic zero. I,? Ann. Math.79, No. 1, 109?180 (1964). · Zbl 0122.38603
[270] H. Hironaka, ?Onsome formal imbeddings,? Ill. J. Math.,12, No. 4, 587?602 (1968).
[271] H. Hironaka, ?Equivalence and deformations of isolated singularities,? Lee. Notes. Amer. Math. Soc. and Summer Inst. Algebr. Geometry Woods Hole, Mass. (1964), pp. 1?14.
[272] H. Hironaka, ?Formal line bundles along exceptional loci,? Algebr. Geometry, London (1969), pp. 201?218. · Zbl 0205.24802
[273] H. Hironaka and H. Matsumura, ?Formal functions and formal embeddings,? J. Math. Soc. Jap.,20, 52?82 (1968). · Zbl 0157.27701
[274] J. Hocquemiller, ?Sur certaines families de souspréschémas fermés d’un préscéme localement noethèrien,? C. r. Acad. Sci.,262, No. 1, A1-A3 (1966).
[275] K. Hoechsmann, ?Subaffine schemes,? Can. Math. Bull.,12, No. 2, 179?181 (1969). · Zbl 0175.48001
[276] H. Holmann, ?Komplexe Raume mit komplexen Transformationsgruppen,? Math. Ann.,150, No. 4, 327?360 (1963). · Zbl 0156.30603
[277] A. Holme, ?Some formal embeddings and projection theorems,? Doct. Diss. Columbia Univ., (1968), 78 pp. Dissert. Abstrs.,B29, No. 6, 2115 (1968).
[278] A. Holme, ?Formal embeddings and projection theorems,? Amer. J. Math.,93, No. 2, 527?571 (1971). · Zbl 0225.14002
[279] J. Hornell, ?Complete intersections on algebraic variety,? Doct. Diss. Berkeley Univ., (1967), 90 pp. Dissert. Abstracts.,B28, 2939 (1968).
[280] G. Horrocks, ?A Hilbert function for stacks on Grassman varieties,? Proc. London Math. Soc.,9, No. 1, 51?53 (1959). · Zbl 0088.13602
[281] G. Horrocks, ?Fixed point schemes of additive group actions,? Topology,8, No. 3, 233?242 (1969). · Zbl 0159.22401
[282] G. Horrocks, ?Sheaves on projective space invariant under the unitriangular group,? Invent. Math.,10, No. 2, 108?118 (1970). · Zbl 0194.51901
[283] W. Hoyt, ?On the Chow bunches for different projeetive embeddings of a complete variety,? Amer. J. Math.,88, No. 2, 273?278 (1966). · Zbl 0142.18501
[284] W. Hoyt, ?Embeddings of Picard varieties,? Proc. Amer. Math. Soc.,15, 26?31 (1964). · Zbl 0126.16802
[285] F. Huikeshoven, ?Multiple algebraic curves,? Moduli Problems. Amsterdam, 1971.
[286] J. Igusa, ?On some problems in abstract algebraic geometry,? Proc. Nat. Acad. Sci. USA,41, No. 11, 964?967 (1955). · Zbl 0067.39102
[287] J. Igusa, ?A fundamental inequality in the theory of Picard varieties,? Proc. Nat. Acad. Sci. USA,41, No. 11, 317?320 (1955). · Zbl 0067.39201
[288] J. Igusa, ?Fibre systems of Jacobian varieties. I,? Amer. J. Math.,78, No. 1, 171?199 (1956). · Zbl 0074.15803
[289] J. Igusa, ?Betti and Picard numbers of abstract algebraic surfaces,? Proc. Nat. Acad. Sci. USA,46, No. 5, 724?726 (1960). · Zbl 0099.16402
[290] L. Illusie, ?Complexe cotangent d’un faisceaux d’algèbres,? C. r. Acad. Sci.,268, No. 5, A278-A281 (1969). · Zbl 0169.36201
[291] L. Illusie, ?Complexe cotangent d’un faisceaux d’algèbres,? C. r. Acad. Sci.,268, No. 6, A323-A326 (1969). · Zbl 0169.36201
[292] L. Illusie, ?Complexe cotangent et deformations. I,? Lect. Notes Math., No. 239 (1971). · Zbl 0224.13014
[293] M. Ishida, ?On Galois coverings of algebraic varieties and Albanese varieties attached to them,? J. Fac. Sci. Univ. Tokyo. Sec. I,8, No. 3, 577?604 (1960). · Zbl 0096.36101
[294] M. Ishida, ?On coverings of algebraic varieties,? J. Math. Soc. Jap.,13, No. 3, 211?219 (1961). · Zbl 0115.38404
[295] B. Iversen, ?Linear determinants with applications to the Picard scheme of a family of algebraic curves,? Lect. Notes Math., No. 174 (1970), 69 pp. · Zbl 0205.50802
[296] B. Iversen, ?Critical points of an algebraic function,? Invent. Math.,12, No. 2, 210?224 (1971). · Zbl 0223.14003
[297] W. Jenner, Rudiments of Algebraic Geometry, Oxford Press, New York (1963). · Zbl 0111.17706
[298] C. Jepsen, ?Some numerical results on divisorial schemes,? Doct. Diss. Indiana Univ., 1967, 47 pp. Dissert. Abstrs.,B28, 2520?2521 (1967).
[299] E. Kähler, ?Geometria aritmetica,? Ann. Mat. Pura Appl.,45 (1958), 399 pp.
[300] N. Katz, ?On the intersection matrix of a hyper surface,? Ann. Sci. École Norm. Supér.,2, No. 4, 583?598, 1969 (1970). · Zbl 0187.42802
[301] N. Katz, ?On the differential equations satisfied by period matrices,? Publs. Math. Inst. Hautes Études Scient., No. 35, 223?258, 1968 (1969).
[302] N. Katz, ?Nilpotent connections and the monodromy theorem. Application of a result of Turritin,? Publs. Math. Inst. Hautes Études Scient., No. 34, 175?231 (1970). · Zbl 0221.14007
[303] K. Kendig, ?Algebraic geometry over Dedekind domains,? Doct. Diss. Los Angeles, Univ. Calif. 1965, Dissert. Abstrs.,26, 3369?3370 (1965).
[304] R. Kiehl and E. Kunz, ?Vollstandige Durchschnitte und p-Basen,? Arch. Math.,16, Nos. 4?5, 348?362 (1965). · Zbl 0141.03703
[305] K. Kiyek, ?Einige Bemerkungen zur Theorie der Divisoren,? Arch. Math.,21, No. 3, 268?277 (1970). · Zbl 0204.21601
[306] K. Kiyek, ?Kohomologiegruppen und Konstantenreduktion in Funktionenkorpern,? Invent. Math.,9, No. 1, 99?120 (1970). · Zbl 0188.25002
[307] S. Kleiman, ?A note on the Nakai-Moisezon test for ampleness of a divisor,? Amer. J. Math.,87, No. 1, 221?226 (1965). · Zbl 0136.16101
[308] S. Kleiman, ?A numerical approach to proving projectivity,? Ann. Mat. Pura Appl.,71, 323?330 (1966). · Zbl 0141.37202
[309] S. Kleiman, ?Toward a numerical theory of ampleness,? Ann. Math.,84, No. 1, 293?344 (1966). · Zbl 0146.17001
[310] S. Kleiman, ?On the vanishing of Hn(X, F) for an n-dimensional variety,? Proc. Amer. Math. Soc.,18, No. 5, 940?944 (1967).
[311] S. Kleiman, ?Algebraic cycles and the Weil conjectures,? Dix Exposes Cohom. Schémas, Amsterdam-Paris (1968), pp. 359?386.
[312] S. Kleiman, ?Ample vector bundles on algebraic surfaces,? Proc. Amer. Math. Soc.,21, No. 3, 673?676 (1969). · Zbl 0176.18502
[313] M. Kneser, ?Über die Darstellung algebraischer Raumkurven als Durchschnite von Flachen,? Arch. Math.,11, No. 3, 157?158 (1960). · Zbl 0093.34202
[314] D. Knutson, ?Algebraic spaces,? Lect. Notes Math., No. 203 (1971), 261 pp.
[315] T. Kodama, ?Residuenfreie Differentiale und der Cartier-Operator algebraischer Funktionenkorper,? Arch. Math.,22, No. 3, 271?274 (1971). · Zbl 0223.14012
[316] H. Kramer, ?Eine Bemerkung zur einer Vermutung von Lipman,? Arch. Math.,20, No. 1, 30?35 (1969). · Zbl 0185.09901
[317] W.-E. Kuan, ?The hyperplane section through a normal point of an algebraic variety,? Doct. Diss. Berkeley, Univ. Calif., Dissert. Abstrs.,B27, No. 8, 2782 (1967).
[318] W.-E. Kuan, ?On the hyperplane section through two given points of an algebraic variety,? Can. J. Math.,22, No. 1, 128?133 (1970). · Zbl 0191.51803
[319] W.-E. Kuan, ?A note on a generic hyperplane section of an algebraic variety,? Can. J. Math.,22, No. 5, 1047?1054 (1970). · Zbl 0205.24801
[320] K. Kubota, ?Ample sheaves,? J. Fac. Sci. Univ. Tokyo,17, No. 3, 421?430 (1970). · Zbl 0212.26102
[321] N. Kuhlmann, ?Zur Theorie der Modifikationen algebraischer Varietatan (birationale Transformationen),? Sehr. Math. Inst. Univ. Munster No. 14 (1959), 49 pp.
[322] E. Kunz, ?Differentialformen inseparabler algebraischer Funktionenkorper,? Math., Z.,76, No. 1, 56?74 (1961). · Zbl 0097.02404
[323] E. Kunz, Einige Anwendungen des Cartier-Operators,? Arch. Math.,13, Nos. 4?5, 349?356 (1962). · Zbl 0106.02902
[324] E. Kunz, ?Über die kanonische Klasse eines vollstandigen Modells eines algebraischen Funktionen-korpers,? J. Reine Angew. Math.,209, No. 1, 17?28 (1962). · Zbl 0105.03001
[325] E. Kunz, ?Vollständige Durchschnitte und Differenten,? Arch. Math.,19, No. 1, 47?58 (1968). · Zbl 0162.05502
[326] E. Kunz, ?Remark on the purity of the branch locus,? Proc. Amer. Math. Soc.,20, No. 2, 378?380 (1969). · Zbl 0175.32103
[327] M. Kuranishi, ?On the locally complete families of complex analytic structures,? Ann. Math.,75, No. 3, 536?577 (1962). · Zbl 0106.15303
[328] H. Kurke, ?Einige Eigenschaften von quasiendlichen Morphismen von Praschemata,? Monatsber. Dtsch. Akad. Wiss. Berlin,9, Nos. 4?5, 248?257 (1967). · Zbl 0157.27702
[329] H. Kurke, ?Über quasiendliche Morphismen von Preschemata,? Monatsber. Dtsch. Akad. Wiss. Berlin,10, No. 6, 389?393 (1968). · Zbl 0192.57803
[330] H. Kurke and W. Vogel, ?Gefilterte Moduln und ihre Anwendungen in der algebraische Geometrie,? Publs. Math.,16, No. 1, 43?49 (1969).
[331] S. Lang, Introduction to Algebraic Geometry, Interscience Publ., N. Y. (1958). · Zbl 0095.15301
[332] S. Lang and J.-P. Serre, ?Sur les revetements non ramifies des variéties algebriques,? Amer. J. Math.,79, 319?330 (1957). · Zbl 0089.26401
[333] M. Laplaza, ?Nota sobre el haz estrucctural de un anillo,? Rev. Mat. Hisp.-Amer.,26, No. 4, 114?117 (1966).
[334] A. Lascu, ?The order of a rational function at a subvariety of an algebraic variety,? Atti Accad. Naz. Lincei. Rend. Cl. Fiz. Mat. Natur.,34, No. 4, 378?384 (1963). · Zbl 0125.10302
[335] D. Lazard, ?Disconnexites des spectres d’anneaux et des préschémas,? Bull. Soc. Math. France,95, No. 1, 95?108 (1967). · Zbl 0158.03902
[336] J. Leray, ?L’anneau spectral et l’anneau filtré d’homologie d’une espace localement compact et d’une application continue,? J. Math. Pures et Appl.,29, No. 1, 1?139 (1950). · Zbl 0038.36301
[337] A. H. M. Levelt, ?Foncteurs exacts à gauche,? Invent. Math.,8, No. 2, 114?141 (1969). · Zbl 0194.01905
[338] A. H. M. Levelt, ?Foncteurs exacts à gauche. Une rectification et une simplifications,? Invent. Math.,10, No. 1, 1?3 (1970). · Zbl 0201.02301
[339] A. H. M. Levelt, ?Sur la prorepresentabilité de certains foncteurs en geometrie algébrique,? Multigraphed notes, Kath. Univ. Nijmegen, The Netherlands (1964).
[340] S. Lichtenbaum, ?Curves over discrete valuation rings,? Amer. J. Math.,90, No. 2, 380?405 (1968). · Zbl 0194.22101
[341] S. Lichtenbaum and M. Schlessinger, ?The cotangent complex of a morphism? Trans. Amer. Math. Soc,128, No. 1, 41?70 (1967). · Zbl 0156.27201
[342] J. Lipman, ?Free derivation modules on algebraic varieties,? Amer. J. Math.,87, No. 4, 874?898 (1965). · Zbl 0146.17301
[343] J. Lipman, ?On the Jacobian ideal of the module of differentials,? Proc. Amer. Math. Soc.,21, No. 2, 422?426 (1969). · Zbl 0174.52703
[344] J. Lipman, ?Rational singularities, with applications to algebraic surfaces and unique factorization,? Publ. Math. Inst. Hautes Études Scient., No. 36, 195?279 (1969). · Zbl 0181.48903
[345] S. Lubkin, ?On a conjecture of Andre Weil,? Amer. J. Math.,89, 443?548 (1967). · Zbl 0208.48403
[346] S. Lubkin, ?A p-adic proof of Weil’s conjectures. I,? Ann. Math.,87, No. 1, 105?194 (1968). · Zbl 0188.53004
[347] S. Lubkin, ?A p-adic proof of Weil’s conjectures. 2,? Ann. Math.,87, No. 2, 195?255 (1968). · Zbl 0188.53004
[348] I. Macdonald, Algebraic geometry. Introduction to Schemes, Vol. 7, Benjamin, New York (1968), 113 pp.
[349] R. Mallot, ?Descomposiciones galoisianas de una varidad algebraica,? Acta Salmant. Ser. Scene,6, No. 1, 61?64 (1965).
[350] Yu. I. Manin, ?Moduli fuchsiani,? Ann. Scuola Norm. Super. Pisa, Sci. Fiz. et Mat.,19, No. 1, 113?126 (1965).
[351] C. Margaglio, ?Consoderazioni sulle somme dirette di fasci algebrici coerenti di rango uno,? Atti Accad. Naz. Lincei. Rend.,37, No. 1, 52?57 (1964). · Zbl 0125.38802
[352] C. Margaglio, ?Una caratterizzazione di certi fasci algebrici coerenti ed una ulteriore applicazione della proprietà di estensione,? Rend. Semin. Mat. Univ. Padova,34, No. 2, 369?377 (1964). · Zbl 0154.20703
[353] C. Margaglio, ?Sul prodotto tensoriale di fasci algebrici coerentie lisci,? Rend. Semin. Mat. Univ. Padova,34, No. 2, 378?389 (1964). · Zbl 0154.20801
[354] C. Margaglio, ?Sopra un problema di immersione per certi fasci algebrici coerenti su ona varietà affine,? Rend. Semin. Mat. Univ. Padova,39, 400?411, 1967 (1968). · Zbl 0165.54803
[355] C. Margaglio, ?Sulla torsione in un prodotto tensoriale di moduli senze torsione,? Rend. Semin. Mat. Univ. Padova,40, 325?346 (1968). · Zbl 0182.37102
[356] M. Martin, ?Sur une caractérisation des ouverts affinnes d’un schéma affine,? C. r. Acad. Sci.,273, No. 1, A38-A40 (1971).
[357] H. Matsumura, ?Geometric structure of the cohomology rings in abstract algebraic geometry,? Mem. Coll. Sci. Univ. Kyoto, Ser. A. Math.,32, No. 1, 33?84 (1959). · Zbl 0119.36903
[358] H. Matsumura and F. Oort, ?Representability of group functors and automorphisms of algebraic schems,? Invent. Math.,4, No. 1, 1?25 (1967). · Zbl 0173.22504
[359] T. Matsusaka, ?On the algebraic construction of the Picard variety,? Jap. J. Math.,21, No. 2, 217?236 (1951). · Zbl 0045.42102
[360] T. Matsusaka, ?Theory of Q-Varieties,? Vol. 8, Tokyo Publs. Math. Soc. Japan (1964), 158 pp. · Zbl 0168.41801
[361] A. Mattuck, ?Picard bundles,? Ill. J. Math.,5, No. 4, 550?564 (1961). · Zbl 0107.14702
[362] A. Mattuck, ?Complete ideals and monoidal transforms,? Proc. Amer. Math. Soc.,26, No. 4, 555?560 (1970). · Zbl 0214.20002
[363] B. Mazur, ?Local flat duality,? Amer. J. Math.,92, No. 2, 343?361 (1970). · Zbl 0199.24501
[364] B. Mazur and L. Roberts, ?Local Euler characteristics,? Invent. Math.,9, No. 3, 201?234 (1970). · Zbl 0191.19202
[365] W. Messing, ?The crystals associated to Barsotti-Tate groups, with applications to abelian schemes,? Lect. Notes Math., No. 264 (1972), 190 pp. · Zbl 0243.14013
[366] J. Milne, ?The Brauer group of a rational surface,? Invent. Math.,11, No. 4, 304?307 (1970). · Zbl 0205.25101
[367] M. Miyanishi, ?On the pro-representability of a functor on the category of finite group schems,? J. Math. Kyoto Univ.,6, No. 1, 31?48 (1966). · Zbl 0168.41901
[368] M. Miyanishi, ?On the cohomologies of commutative affine group schemes,? J. Math. Kyoto Univ.,8, No. 1, 1?39 (1968). · Zbl 0181.48801
[369] M. Miyanishi, ?Quelques remarques sur la prémiere cohomologie d’un préschema affine en groups commutatifs,? Jap. J. Math.,38, No. 1, 51?60 (1969).
[370] H. Mizuno, ?Canonical cycles on algebraic varieties,? J. Fac. Sci. Univ. Tokyo, Sec. 1,11, No. 1, 1?28 (1964). · Zbl 0136.16203
[371] H. Mizuno, ?Canonical cycles on algebraic varieties,? J. Fac. Sci. Univ. Tokyo, Sec. I,12, No. 2, 213?222 (1966). · Zbl 0136.16203
[372] P. Monsky, ?Formai cohomology. 2. The cohomology sequence of a pair,? Ann. Math.,88, No. 1, 218?238 (1968). · Zbl 0162.52601
[373] P. Monsky, ?Formal cohomology. 3. Fixed point formula,? Ann. Math.,93, No. 2, 315?343 (1971). · Zbl 0213.47501
[374] P. Monsky and G. Washnitzer, ?The construction of formal cohomology sheaves,? Proc. Nat. Acad. Sci. USA,52, No. 6, 1511?1514 (1964). · Zbl 0134.16403
[375] P. Monsky and G. Washnitzer, ?Formal cohomology. I,? Ann. Math.,88, No. 1, 181?217 (1968). · Zbl 0162.52504
[376] D. Mumford, ?Pathologies of modular algebraic surfaces,? Amer. J. Math.,88, No. 2, 339?342 (1961). · Zbl 0138.42002
[377] D. Mumford, ?The topology of normal singularities of an algebraic surface and a criterion for simplicity,? Publs. Math. Inst. Hautes Etudes Scient.,9, 5?22 (1961). · Zbl 0108.16801
[378] D. Mumford, ?Further pathologies in algebraic geometry,? Amer. J. Math.,84, No. 3, 642?648 (1962). · Zbl 0114.13106
[379] D. Mumford, ?Picard groups of modules problems,? Arithmet. Algebraic Geometry, Proc. Conf., Purdue Univ., 1963, New York (1965), pp. 33?81.
[380] D. Mumford, Geometric invariant theory, (Ergebn. Math. Bd. 34). Berlin-Heidelberg-New York, Springer (1965), 146 pp. · Zbl 0147.39304
[381] D. Mumford, Lectures on Curves on an Algebraic Surface, (Ann. Math. Stud. No. 59). Princeton Univ. Press (1966), 200 pp. · Zbl 0187.42701
[382] D. Mumford, ?Pathologies. 3,? Amer. J. Math.,89, No. 1, 94?104 (1967). · Zbl 0146.42403
[383] D. Mumford, ?Bi-extensions of formal groups,? Algebr. Geom. London (1969), pp. 307?322.
[384] D. Mumford, Introduction to Algebraic Geometry, Harvard Univ., 1966 (preprint). · Zbl 0187.42701
[385] D. Mumford, Abelian Varieties, Tata Inst. Fund. Research Studies Math. No. 5, Oxford Univ. Press, London (1970), 242 pp.
[386] R. Munson, ?On Zariski’s main theorem,? Doct. Diss. Rutgers-State Univ., Dissert. Abstrs.,B29, No. 11 (1969), p. 4277.
[387] J. P. Murre, ?On Chow varieties of maximal, total, regular families of positive divisors,? Amer. J. Math.,83, No. 1, 99?110 (1961). · Zbl 0096.36003
[388] J. P. Murre, ?On generalized Picard varieties,? Math. Ann.,145, No. 4, 334?353, 1961 (1962). · Zbl 0123.13902
[389] J. P. Murre, ?On contravariant functors from the category of Abelian groups (with application to the Picard functor),? Publs. Math. Inst. Hautes Études Scient., No. 23, 581?619 (1964). · Zbl 0142.18402
[390] J. P. Murre, ?Representation of unramified functor. Applications,? Sémin. Bourbaki Secrét. Math., 1964?1965, annee 17, No. 3, 249/01?249/19 (1966).
[391] J. P. Murre, Introduction to Grothendieck’s Theory of the Fundamental Group. Tata Institute of Fundamental Research, Bombay (1966). · Zbl 0198.26202
[392] M. Nagata, ?A general theory of algebraic geometry over Dedekind domains. I,? Amer. J. Math.,78, No. 1, 78?116 (1956). · Zbl 0089.26403
[393] M. Nagata, ?On the imnedding problem of abstract varieties in projective varieties,? Mem. Coll. Sci. Kyoto Univ.,A30, No. 1, 71?82 (1956). · Zbl 0075.16003
[394] M. Nagata, ?On the imbeddings of abstract surfaces in projective varieties,? Mem. Coll. Sci. Kyoto Univ.A30, No. 3, 231?235 (1957). · Zbl 0079.15101
[395] M. Nagata, ?Existence theorems for nonprojective complete algebraic varieties,? Ill. J. Math.,2, No. 4A, 490?498 (1958). · Zbl 0081.37503
[396] M. Nagata, ?Remarks on a paper of Zariski on the purity of branch loci,? Proc. Nat. Acad. Sci. USA,44, No. 8, 796?797 (1958). · Zbl 0089.16905
[397] M. Nagata, ?A general theory of algebraic geometry over Dedekind domains. 3. Absolutely irreducible models, simple spots,? Amer. J. Math.,80, No. 2, 382?420 (1959). · Zbl 0089.26501
[398] M. Nagata, ?An example to a problem of Abhyankar,? Amer. J. Math.,81, No. 2, 501?502 (1959). · Zbl 0108.16902
[399] M. Nagata, ?Imbedding of an abstract variety in a complete variety,? J. Math., Kyoto Univ.,2, No. 1, 1?10 (1962). · Zbl 0109.39503
[400] M. Nagata, ?A generalization of the imbedding problem of an abstract variety in a complete variety,? J. Math., Kyoto Univ.,3, No. 1, 89?102 (1963). · Zbl 0223.14011
[401] M. Nagata, Local Rings, New York, Interscience (1962), 234 pp.
[402] Y. Nakai, ?Some results in the theory of the differential forms of the first kind on algebraic varities. 2.? Mem. Coll. Sci. Univ. Kyoto, Ser. A,31, No. 2, 87?93 (1958). · Zbl 0147.20401
[403] Y. Nakai, ?Ramifications, differentials and difference on algebraic varieties of higher dimensions,? Mem. Coll. Sci. Univ. Kyoto, Ser. A,32, No. 2, 391?411 (1960). · Zbl 0105.14202
[404] Y. Nakai, ?Non-degenerate divisors on an algebraic surface,? J. Sci. Hiroshima Univ., Ser. A,24, No. 1, 1?6 (1960). · Zbl 0118.15803
[405] Y. Nakai, ?On the theory of differentials in commutative ring,? J. Math. Soc. Jap.,13, No. 1, 63?84 (1961). · Zbl 0113.26301
[406] Y. Nakai, ?A criterion of an ample sheaf on a projective scheme,? Amer. J. Math.,85, No. 1, 14?26 (1963). · Zbl 0112.13102
[407] Y. Nakai, ?On the theory of differentials on algebraic varieties,? J. Sci. Hiroshima Univ., Ser. A,27, No. 1, 7?34 (1963). · Zbl 0113.36402
[408] Y. Nakai, ?Some fundamental lemmas on protective schemes,? Trans. Amer. Math. Soc.,109, No. 1, 296?302 (1963). · Zbl 0123.38202
[409] Y. Nakai, ?Note on the theory of differential forms on algebraic varieties,? J. Sci. Hiroshima Univ., Ser. A,29, No. 1, 11?15 (1965). · Zbl 0146.17401
[410] Y. Namikawa, ?An application of Serre-Grothendieck duality theorem to local cohomology,? Proc. Jap. Acad.,46, No. 6, 483?486 (1970). · Zbl 0227.14005
[411] H.-J. Nastold, ?Zum Dualitatssatz in inseparablem Funktionenkorper der Dimension 1,? Math. Z.,76, No. 1, 75?84 (1961). · Zbl 0097.02601
[412] H.-J. Nastold, ?Zur Cohomologietheorie in der algebraischen Geometry. I,? Math., Z.,77, No. 4, 359?390 (1961). · Zbl 0109.39502
[413] H.-J. Nastold, ?Zur Cohomologietheorie In der algebraischen Geometry. 2. Serres Dualitatssatz und der Satz von Riemann-Roch für Flachen,? Math. Z.,78, No. 4, 375?405 (1962).
[414] A. Néron, ?Modéles minimaux des variétès abéliennes sur les corps locaux et globaux,? Publs. Math. Inst. Hautes Études Scient, No. 21 (1964), 128 pp.
[415] T. Oda, ?The first de Rahm cohomology group and Dieudonné modules,? Ann. Scient. École Norm. Sup.,2, No. 1, 63?135 (1969). · Zbl 0175.47901
[416] A. P. Ogg, ?Cohomology of abelian varieties over function fields,? Ann. Math.,76, No. 1, 185?212 (1962). · Zbl 0121.38002
[417] F. Oort, Reducible and Multiple Algebraic Curves, Leiden (1961), 83 pp. · Zbl 0102.15905
[418] F. Oort, ?A construction of generalized Jacobian varieties by group extensions,? Math. Ann.,147, No. 4, 277?286 (1962). · Zbl 0101.38502
[419] F. Oort, ?Sur le schéma de Picard,? Bull. Soc. Math., France,90, No. 1, 1?14 (1962). · Zbl 0123.13901
[420] F. Oort, ?A note on rationality of divisor classes on algebraic schemata (separable case),? Math. Ann.,149, No. 1, 67?70 (1962). · Zbl 0161.18102
[421] F. Oort, ?Commutative group schemes,? Lect. Notes Math., No. 15 (1966), 133 pp.
[422] F. Oort, ?Algebraic group schemes in characteristic zero are reduced,? Invent. Math.,2, No. 1, 79?80 (1966). · Zbl 0173.49002
[423] F. Oort, ?Hensel’s lemma and rational points over local rings,? Sympos. Math., Vol. 3, Rome (1970), pp. 217?232.
[424] F. Oort, ?Finite group schemes, local moduli for abelian varieties and lifting problems,? Compos. Math.,23, No. 3, 256?296 (1971). · Zbl 0223.14024
[425] F. Oort and D. Mumford, ?Deformations and liftings of finite commutative group schemes,? Invent. Math.,5, No. 4, 317?334 (1966). · Zbl 0179.49901
[426] B. Paz, ?Correspondencias algebraicas fuertemente y debilmente irreducibles,? Rev. Mat. Hisp.-Amer.,28, No. 5, 141?183 (1968).
[427] R. Pendleton, ?Structure theorems for torsion free coherent sheaves over the Riemann manifold of a field,? Doct. Diss. Indiana Univ., 1964, 58 pp. Dissert. Abstrs.,25 (1965), p. 6661.
[428] C. Peskine, ?Une générlization du ’main theorem’ de Zariski,? Bull. Sci. Math.,90, Nos. 3?4, 119?127 (1966). · Zbl 0142.28702
[429] C. Peskine and L. Szpiro, ?Sur la topologie des sousschémas férmes d’un schéma localement noetherien definis comme support d’un faisceaux coherent localement de dimension projective finie,? C. r. Acad. Sci.,269, No. 1, A49-A51 (1969). · Zbl 0184.29001
[430] C. Peskine and L. Szpiro, ?Théorèmes de finitude t de nullité en cohomologie des schémas,? C. r. Acad. Sci.,271, No. 20, A1000-A1002 (1970). · Zbl 0212.53601
[431] H. Popp, ?Zur Reduktionstheorie algebraischer Funktionenkorper vom Transzendenzgrad 1: Existenz einer regularen Reduktion zu vorgegebenem Funktionenkorper als Restklassenkorper,? Arch. Math.,17, No. 6, 510?522 (1966). · Zbl 0192.26901
[432] H. Popp, ?Über die Fundamentalgruppe einer punktierten Riemannschen Flachen bei Characteristic p>0,? Math., Z.,96, No. 2, 111?124 (1967). · Zbl 0153.50402
[433] H. Popp, ?Über die Fundamentalgruppe 2-dimensionaler Schemata,? Sympos. Math., Vol. 3, Rome (1970), pp. 403?451. · Zbl 0194.21802
[434] H. Popp, ?Ein Satz vom Lefschetzschen Typ über die Fundamentalgruppe quasi-projectiver Schemata,? Math., Z.,116, No. 2, 143?152 (1970). · Zbl 0199.55801
[435] H. Popp, ?Fundamentalgruppen algebraischer Mannigfaltigkeiten,? Lect. Notes Math., No. 176 (1970), 156 pp.
[436] D. Quillen, ?On the (co-) homology of commutative rings,? Proc. Symp. Pura Math.,17, 65?87 (1970). · Zbl 0234.18010
[437] C. Ramanujam, ?A note on automorphism groups of algebraic varieties,? Math. Ann.,156, No. 1, 25?33 (1964). · Zbl 0121.16103
[438] Michèle Raynaud, ?Théorèmes de Lefschetz pour les faisceaux cohérents,? C. r. Acad. Sci.,270, No. 11, A710-A713 (1970). · Zbl 0197.17501
[439] Michèle Raynaud, ?Théorèmes de Lefschetz en cohomologie étale des faisceaux en groupes non nécessairement commutatifs,? C. r. Acad. Sci.,270, No. 12, A773-A775 (1970). · Zbl 0202.20303
[440] Michèle Raynaud, ?Proprète comomologique des faisceaux de groupes non commutatifs,? Lect. Notes Math., No. 224, 344?445 (1971).
[441] Michèle Raynaud, ?Profondeur et thébrèmes de Lefschetz en cohomologie étale,? Advanced Stud. Pure Math., Vol. 2, Amsterdam-Paris (1968), pp. 203?284.
[442] Michèle Raynaud, ?Géometrie algébrique et géometrie analytique,? Lect. Notes Math., No. 224, 311?343 (1971).
[443] Michel Raynaud, ?Caracteristique d’Euler-Poincare d’un faisceaux et cohomologie des variétés abéliennes,? Sémin Bourbaki. Secrét, 1964?1965, annee 17, No. 2, 286/01?286/19 (1966). Dix Exposes Cohom. Schemàs, Amsterdam-Paris (1968), pp. 12?30.
[444] Michel Raynaud, ?Modèles de Néron,? C. r. Acad. Sci.,262, No. 6, A345-A347 (1966).
[445] Michel Raynaud, ?Spécialisation du foncteur de Picard,? C. r. Acad. Sci.,264, No. 22, A941-A943 (1967).
[446] Michel Raynaud, ?Spécialisation du foncteur de Picard. 2. Critère numérique de répré’sentabilité,? C. r. Acad. Sci.,264, No. 23, A1001-A1004 (1967). · Zbl 0148.41702
[447] Michel Raynaud, ?Spécialisation du foncteur de Picard,? Publs. Math. Inst. Hautes Études Scient., No. 38, 27?76 (1970). · Zbl 0207.51602
[448] Michel Raynaud, ?Faisceaux amples sur les schemes en groupes et les espaces homogénes,? C. r. Acad. Sci.,262, No. 24, A1313-A1315 (1966). · Zbl 0147.39701
[449] Michel Raynaud, ?Faisceaux amples sur les schémas en groupes et les espaces homogénes,? Lect. Notes Math., No. 119 (1968), 219 pp.
[450] Michel Raynaud, ?Sur le passage au quotient par un groupoide plat,? C. r. Acad. Sci.,265, No. 14, A384-A387 (1967).
[451] Michel Raynaud, ?Passage au quotient par une relation d’equivalence plate,? Proc. Conf. Local Fields, Driebergen, 1966, Berlin-Heidelberg-New York (1967), pp. 78?85.
[452] Michel Raynaud, ?Un critére d’effectivité de descente,? Sémin. P. Sameul, Année 1967?1968, 5/01?5/22, Secrét. Math., Paris.
[453] Michel Raynaud, ?Anneaux locaux henseliennes,? Lect. Notes Math., No. 169 (1970), 133 pp.
[454] Michel Raynaud, ?Travaux recents de M. Artin,? Lect. Notes Math., No. 179, 279?295 (1971).
[455] Michel Raynaud and L. Gruson, ?Critères de platitude et de projectivité,? Invent. Math.,13, Nos. 1?2, 1?89 (1971). · Zbl 0227.14010
[456] F. Rodeja, ?Los ideales irrelevantes en la teoria de cohomologica de variedade algebraicas,? Rev. Mat. Hisp.-Amer.,24, No. 1, 11?15 (1964).
[457] J. Sampson and G. Washnitzer, ?Cohomology of monoidal transforms,? Ann. Math.,69, No. 2, 605?629 (1959). · Zbl 0115.38504
[458] J. Sampson and G. Washnitzer, ?A Kunneth formula for coherent algebraic sheaves,? Ill. J. Math.,3, No. 3, 389?402 (1959). · Zbl 0088.39402
[459] P. Samuel, ?Méthodes d’Algèbre Abstraite en Géométrie Algébrique, Springer, Berlin, 1955; 2nd edition, corrigée, XII (1967), 133 pp.
[460] P. Samuel, ?Elementos de geometria algébrica,? Notas Math., No. 18 (1959), 144 pp.
[461] P. Samuel, ?Sur l’image reciproque d’un diviseur,? J. Reine Angew. Math.,204, No. 1, 1?10 (1960). · Zbl 0213.23202
[462] P. Samuel, Le théorème de Hahn-Banach en geometrie algébrique. Atti di Torino Convegno (1961), pp. 75?82.
[463] I. R. Shafarevich (Schafarewitsch), Lectures on minimal models and birational transformations of two dimensional schemes. Tata Institute of Fundamental Research, Bombay (1966), 175 pp. · Zbl 0164.51704
[464] W. Scharlau, Über die Brauer-Gruppe eines algebraischen Funktionenkorpers in einer Variablen,? J. Reine und Angew. Math.,239?240, No. 1, 1?6 (1969). · Zbl 0184.24502
[465] R. Schwarzenberger, ?Jacobians and symmetric products,? Ill. J. Math.,7, No. 2, 257?268 (1963). · Zbl 0123.38104
[466] ?Seminaire C. Chevalley de l’Ecole Normale supér,? Secrét, Math., Année 3, 1958?1958, Paris (1960).
[467] ?Seminaire de Géométrie Algébrique du Bois Marie 1960/61. (SGA3) Revetement étales et groupe fondamental,? Lect. Notes Math., No. 224 (1971), 447 pp.
[468] J.-P. Serre, ?Faisceaux algébriques coherents,? Ann. Math.,61, No. 2, 197?278 (1955). · Zbl 0067.16201
[469] J.-P. Serre, ?Sur la cohomologie des variétés algébriques,? J. Math. Pure Appl.,36, No. 1, 1?16 (1957).
[470] J.-P. Serre, ?Espaces fibres algebriques,? Semin. C. Chevalley de L’Ec. Norm. Sup., Secrét. Math., annee 2, 1/01?1/37 (1958).
[471] J.-P. Serre, ?Sur la topologie des variétés algébriques en caracteristique P,? Symp. Internat. Topologia Algebr., Mexico (1958),pp. 24?53.
[472] J.-P. Serre, ?On the fundamental group of a unirational variety,? J. London Math. Soc,34, No. 4; 481?484 (1959). · Zbl 0097.36301
[473] J.-P. Serre, ?Revêtements ramifiés du plan projectif,? Semin. Bourbaki. Secrét. Math., Année 12, (1959?1960), 204/01?204/07.
[474] J.-P. Serre, ?Groupes pro-algebriques,? Publ. Math. Inst. Math. Hautes Scient., No. 7 (1960) 67 pp.
[475] J.-P. Serre, ?Exemples de variétés projecttves en caracteristique p non relevable en caractérisque zéro,? Proc. Nat. Acad. Sci. USA,47, No. 1, 108?109 (1961). · Zbl 0100.16701
[476] J.-P. Serre, ?Géométrie algébrique,? Proc. Internat. Congr. Math., Aug. 1962, Djursholm. Uppsala (1963).
[477] J.-P. Serre, ?Exemples de variétés projectives conjugées non homéomorphes? C. r. Acad. Sci.,258, No. 4, A4194-A4196 (1964). · Zbl 0117.38003
[478] J.-P. Serre, ?Géométrie algébrique et géométrie analytique. (GAGA),? Ann. Inst. Fourier, 1955?1956,6, No. 1, 1?42 (1956). · Zbl 0075.30401
[479] J.-P. Serre, ?Quelques propriétes des variétés abéliennes en caractéristique p,? Amer. J. Math.,80, No. 3, 715?739 (1953). · Zbl 0099.16201
[480] J.-P. Serre and J. Tate, ?Good reduction of abelian varieties,? Ann. Math.,88, No. 2, 492?517 (1968). · Zbl 0172.46101
[481] C. Seshadri, ?Variété de Picard d’une variété complète,? Ann. Mat. Pura Appl. (4),57, 117?142 (1962). · Zbl 0108.17001
[482] C. Seshadri, ?Construction of the Picard variety of a complete nonnormal variety,? Atti Congr. Unione Mat. Ital. Tenuto Napoli 11?16 sett. 1959, Rome, Ed. Gremonese (1960), 421 pp.
[483] C. Seshadri, ?Universal property of the Picard variety of a complete variety,? Math. Ann.,158, No. 3, 293?296 (1965). · Zbl 0132.41501
[484] H. Seydi, ?Anneaux henseliens et conditions de chaînes,? Bull. Soc. Math.,98, No. 1, 9?31 (1970). · Zbl 0189.03803
[485] R. Sharp, ?The Cousin complex for a module over a commutative noetherian ring,? Math. Z.,112, No. 5, 340?356 (1969). · Zbl 0182.06103
[486] S. Shatz, ?Cohomology of artinian group schemes over local fields,? Ann. Math.,79, No. 3, 411?449 (1964). · Zbl 0152.19302
[487] S. Shatz, ?Grothendieck topologies over complete local rings,? Bull. Amer. Math. Soc.,72, No. 2, 303?306 (1966). · Zbl 0142.00902
[488] S. Shatz, ?The cohomological dimension of certain Grothendieck topologies,? Ann. Math.,83, No. 3, 572?595 (1966). · Zbl 0154.20802
[489] S. Shatz, ?The structure of the category of sheaves in the flat topology over certain local rings,? Amer. J. Math.,90, No. 4, 1346?1354 (1968). · Zbl 0175.18502
[490] S. Shatz, ?Principal homogeneous spaces for finite group schemes,? Proc. Amer. Math. Soc.,22, No. 3, 678?680 (1969). · Zbl 0186.54701
[491] A. Sivaramakrishna, ?Sur la réprésentabilité de certains foncteurs contravariants,? C. r. Acad. Sci.,266, No. 6, A345-A347 (1968). · Zbl 0171.19402
[492] E. Snapper, ?Cohomology theory and algebraic correspondences,? Mem. Amer. Math. Soc., No. 33 (1959), 96 pp. · Zbl 0115.38601
[493] E. Snapper, ?Multiples of divisors,? J. Math. Mech.,8, No. 6, 967?992 (1959). · Zbl 0115.38501
[494] E. Snapper, ?Polynomials associated with divisors,? J. Math. Mech.,9, No. 1, 123?139 (1960). · Zbl 0146.42404
[495] E. Snapper, ?Monotone behavior of cohomology groups under proper mappings,? Ill. J. Math.,5, No. 4, 666?680 (1961). · Zbl 0100.16304
[496] Y. Takeuchi, ?A note on Galois covering,? Osaka J. Math.,6, No. 2, 321?327 (1969). · Zbl 0191.51802
[497] J. Tate and F. Oort, ?Group schemes of prime order,? An. Ecole Norm. Supér.,3, No. 1, 1?21 (1970). · Zbl 0195.50801
[498] W. Vasconcelos, ?A note on normality and the module of differentials,? Math. Z.,105, No. 4, 291?293 (1968). · Zbl 0169.36301
[499] J.-L. Verdier, ?A duality theorem in the étale cohomology of schemes,? Lect. Notes Amer. Math. Soc. and Summer Inst. Algebr. Geometry, Woods Hole, Mass., 1964, S. l., s. a., 1?25; Proc. Conf. Local Fields, Driebergen, 1966, Berlin-Heidelberg-New York (1967), pp. 184?198.
[500] J.-L. Verdier, ?The Lefschetz fixed point formula in étale cohomology,? Proc. Conf. Local Fields, Driebergen, 1966, Berlin-Heidelberg-New York (1967), pp. 199?214.
[501] J.-L. Verdier, ?Des catégories dérivées des catégories abéliennes,? Thès. Doct. Sci. Math. Fac. Sci. Univ. Paris (1967), 18 pp.
[502] J.-L. Verdier, ?Base change for twisted inverse image of coherent sheaves,? Algebr. Geometry. London (1969), pp. 393?408. · Zbl 0202.19902
[503] U. Vetter, ?Aussere Potenzen von Differentialmoduln reduzierter vollstandiger Durchschnitte,? Manuscr. Math.,2, No. 1, 67?75 (1970). · Zbl 0194.06903
[504] B. L. van der Waerden, ?Zur algebraischen Geometrie. 20. Der Zusammenhangssatz und der Multiplizitatsbegridd,? Math. Z.,193, No. 1, 89?108 (1971).
[505] W. Waterhouse, ?Automorphisms schemes and forms of Witt Lie algebras,? J. Algebra.,17, No. 1, 34?40 (1971). · Zbl 0212.25602
[506] A. Weil, ?The field of a definition of a variety,? Amer. J. Math.,78, 509?524 (1956). · Zbl 0072.16001
[507] A. Weil, Foundations of Algebraic Geometry, (Amer. Math. Soc. Colloq. Public. V. 29), N. Y., 1946 (2nd edition, 1962). · Zbl 0063.08198
[508] H. Yanagihara, ?On the connectedness theorem on schemes over local domains,? J. Sci. Hiroshima Univ., Ser. A,29, 171?179 (1961). · Zbl 0146.17002
[509] H. Yanagihara, ?Reduction of models over a discrete valuation ring,? J. Math. Kyoto Univ.,2, No. 2, 123?156 (1963). · Zbl 0129.12901
[510] H. Yanagihara, ?Corrections and supplement to the paper ?Reduction of models over a discrete valuation ring,?? J. Math. Kyoto Univ.,3, No. 3, 363?368 (1964).
[511] H. Yanagihara, ?Some remarks on algebraic rings,? J. Math. Kyoto Univ.,3, No. 1, 103?110 (1963). · Zbl 0135.21504
[512] A. Yoshioka, ?Sur la reduction moduloD de certain ensembles algébriques,? Proc. Jap. Acad.,38, No. 9, 680?685 (1962). · Zbl 0121.16102
[513] O. Zariski, ?Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields,? Mem. Amer. Math. Soc. (1951). · Zbl 0045.24001
[514] O. Zariski, ?On the purity of the branch locus of algebraic functions,? Proc. Nat. Acad. Sci. USA,44, No. 8, 791?796 (1958). · Zbl 0087.35703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.