×

zbMATH — the first resource for mathematics

Stable principal bundles on a compact Riemann surface. (English) Zbl 0284.32019

MSC:
32L99 Holomorphic fiber spaces
30F10 Compact Riemann surfaces and uniformization
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Borel, A.: Linear algebraic groups. New York: W. A. Benjamin Inc. 1969 · Zbl 0206.49801
[2] Bourbaki, N.: Groupes et algebres de Lie chapitres 4, 5 et 6. Paris: Hermann 1968 · Zbl 0186.33001
[3] Cartan, H.: Quotient d’un espace analytique par un groupe d’automorphisms, Algebraic geometry and topology (A symposium in honour of S. Lefschets) pp. 90-102. Princeton University Press 1957
[4] Douady, A.: Le probleme des modules pour les varietes analytic complexes, Seminaire Bourbaki, Exposé277, 1964-1965
[5] Griffiths, Ph. A.: The extension problem for compact submanifolds of complex manifolds I, Proceedings of the conference on complexe analysis, Minneapolis 1964. Berlin-Heidelberg-New York: Springer 1965
[6] Grothendieck, A.: A general theory of fibre spaces with structure sheaf. University of Kansas Report No. 4 (1955) · Zbl 0064.35501
[7] Grothendieck, A.: Sur la classification des fibres holomorphes sur la sphere de Riemann. Amer. Jour. of Math.79, 121-138 (1957) · Zbl 0079.17001 · doi:10.2307/2372388
[8] Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962 · Zbl 0111.18101
[9] Husemoller, D.: Fibre bundles, New York: McGraw-Hill Book Company 1966 · Zbl 0144.44804
[10] Kaup, W.: Holomorphic mappings of complex spaces. Institute Nazionale di Alta Mathematica Symposia Mathematica, Vol. II, (1968) · Zbl 0194.11303
[11] Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math.81, 973-1032 (1959) · Zbl 0099.25603 · doi:10.2307/2372999
[12] Kuranishi, M.: New proof for the existence of locally complete families of complex analytic structures. Proceedings of the conference on complex analysis, Minneapolis 1964, Berlin-Heidelberg-New York: Springer 1965 · Zbl 0119.07704
[13] Kuranishi, M.: A note on families of complex structures. Global Analysis: Papers in Honour of K. Kodaira, University of Tokyo Press and Princeton University Press 1969 · Zbl 0211.10301
[14] Koszul, J. L.: Lectures on fibre bundles and differential geometry. Tata Institute of Fundamental Research, 1960
[15] Koszul, J. L., Malgrange, B.: Sur certaine structures fibres complexes, Archiv der Mathematik9, 102-109 (1958) · Zbl 0083.16705 · doi:10.1007/BF02287068
[16] Malgrange, B.: Lectures on the theory of functions of several complex variables, Tata Institute of Fundamental Research, 1958
[17] Maunder, C. R. F.: Algebraic Topology. London: Van Nostrand Reinhold Company 1970 · Zbl 0205.27302
[18] Mumford, D.: Geometric invariant theory, Berlin-Heidelberg-New York: Springer 1965 · Zbl 0147.39304
[19] Narasimhan, M. S., Seshadri, C. S.: Holomorphic vector bundles on a compact Riemann Surface. Math. Ann.155, 69-80 (1964) · Zbl 0122.16701 · doi:10.1007/BF01350891
[20] Narasimhan, M. S., Seshadri, C. S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. Math.82, 540-567 (1965) · Zbl 0171.04803 · doi:10.2307/1970710
[21] Narasimhan, M. S., Simha, R. R.: Manifolds with ample canonical class. Inventiones math.5, 120-128 (1968) · Zbl 0159.37902 · doi:10.1007/BF01425543
[22] Serre, J. P.: Representations Lineaires et espaces homogenes Kähleriens des groupes de Lie compacts. Seminaire Bourbaki, Exposé100 (1954)
[23] Ramanan, S.: Holomorphic vector bundles on homogeneous spaces. Topology5, 159-177 (1966) · Zbl 0138.18602 · doi:10.1016/0040-9383(66)90017-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.