zbMATH — the first resource for mathematics

Support properties of the free measure for boson fields. (English) Zbl 0285.60026

60G15 Gaussian processes
Full Text: DOI
[1] Abramowitz, N., Stegun, I.: Handbook of mathematical functions, pp. 375, 378, Washington: U.S. Govt. Printing Office 1964 · Zbl 0171.38503
[2] Cannon, J.: Continuous sample paths in quantum field theory, to appear in Commun. math. Phys.
[3] Colella, P., Lanford, O.: Sample field behavior for the free Markov random field. In: Velo, G., Wightman, A. (Ed.): Constructive quantum field theory, Springer Lecture Notes in hysics25. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0346.28004
[4] Dimock, J., Glimm, J.: Measures on the Schwartz distribution space and applications to quantum field theory, to appear · Zbl 0313.28015
[5] Gelfand, I., Shilov, G.: Generalized functions I, p. 288, New York: Academic Press 1964
[6] Gelfand, I., Vilenkin, N.: Generalized functions IV, p. 329, New York: Academic Press 1964
[7] Guerra, F., Rosen, L., Simon, B.: TheP(\(\phi\))2 Euclidean quantum field theory as classical statistical mechanics, Ann. Math., to appear
[8] Hida, T.: Stationary stochastic processes, p. 70, Princeton: Princeton University Press 1970 · Zbl 0214.16401
[9] Loève, M.: Probability theory, New York: Van Nostrand 1960 · Zbl 0095.12201
[10] Nelson, E.: Quantum fields and Markoff fields. In: Proceedings of the Summer Institute of Partial Differential Equations, Berkeley, 1971, A.M.S., Providence 1973 · Zbl 0279.60096
[11] Nelson, E.: J. Funct. Anal.12, 97–112 (1973) · Zbl 0252.60053 · doi:10.1016/0022-1236(73)90091-8
[12] Nelson, E.: J. Funct. Anal.12, 211–227 (1973) · Zbl 0273.60079 · doi:10.1016/0022-1236(73)90025-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.