×

On hypohamiltonian graphs. (English) Zbl 0286.05122


MSC:

05C35 Extremal problems in graph theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Berge, C., Problémes plaisants et delectables no. 29, Res française informat. recherche opérationelle, 7, 405-406, (1963)
[2] Berge, C., Graphes et hypergraphics, (1970), Dunod Paris · Zbl 0213.25702
[3] Bondy, J.A., Variations on the Hamiltonian theme, Can. math. bull., 15, 57-62, (1972) · Zbl 0238.05115
[4] Chvátal, V., Flip-flops in Hypohamiltonian graph, Can. math. bull., 16, 33-41, (1973) · Zbl 0253.05142
[5] Chvátal, V., New directions in Hamiltonian graph theory, (), 81
[6] Chvátal, V.; Klaner, D.A.; Knuth, D.E., (unreadable data) combinatorial research problems, (1972), Stanford University Stanford, Problem 40
[7] J. Doyen and V. Van Diest, New families of hypohamiltonian graphs, to appear. · Zbl 0312.05114
[8] Harary, F., Graph theory, (1969), Addison-Wesley Reading, Mass · Zbl 0797.05064
[9] Hertz, J.C.; Duby, J.J.; Vigué, F., Recherche systématique des graphes hypohamiltonien, (), 153-160
[10] Herz, J.C.; Gaudin, T.; Rossi, P., Solution du problème no. 29, Rev. fran¢aise informat. recherche opérationnelle, 8, 214-218, (1964)
[11] Lindgren, W.F., An infinite class of Hypohamiltonian graphs, Am. math. monthly, 74, 1087-1089, (1967) · Zbl 0158.42503
[12] Thomassen, C., Hypohamiltonian and hypomeceabl graphs, Discrete math., 9, 91-96, (1974) · Zbl 0278.05110
[13] Tutte, W.T., On Hamiltonian circuits, J. London math. soc., 21, 98-101, (1947) · Zbl 0061.41306
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.