×

zbMATH — the first resource for mathematics

On dynamical systems with the specification property. (English) Zbl 0286.28010

MSC:
28D05 Measure-preserving transformations
54H20 Topological dynamics (MSC2010)
11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rufus Bowen, Topological entropy and axiom \?, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 23 – 41.
[2] Rufus Bowen, Periodic points and measures for Axiom \? diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377 – 397. · Zbl 0212.29103
[3] Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401 – 414. · Zbl 0212.29201
[4] Rufus Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972), 1 – 30. · Zbl 0254.58005 · doi:10.2307/2373590 · doi.org
[5] -, Some systems with unique equilibrium states (to appear). · Zbl 0299.54031
[6] C. M. Colebrook, The Hausdorff dimension of certain sets of nonnormal numbers, Michigan Math. J. 17 (1970), 103 – 116. · Zbl 0194.35802
[7] Yael Naim Dowker, The mean and transitive points of homeomorphisms, Ann. of Math. (2) 58 (1953), 123 – 133. · Zbl 0050.33903 · doi:10.2307/1969823 · doi.org
[8] H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser. 20 (1949), 31 – 36. · Zbl 0031.20801
[9] H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83 (1961), 573 – 601. · Zbl 0178.38404 · doi:10.2307/2372899 · doi.org
[10] Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1 – 49. · Zbl 0146.28502 · doi:10.1007/BF01692494 · doi.org
[11] Morris W. Hirsch, Expanding maps and transformation groups, Global analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 125 – 131.
[12] John C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116 – 136. · Zbl 0046.11504
[13] J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2) 42 (1941), 874 – 920. · Zbl 0063.06074 · doi:10.2307/1968772 · doi.org
[14] K. R. Parthasarathy, A note on mixing processes, Sankhyā Ser. A 24 (1962), 331 – 332. · Zbl 0108.30702
[15] K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. · Zbl 0153.19101
[16] D. Ruelle, Statistical mechanics on a compact set with \( {Z^\nu }\) action satisfying expansiveness and specification (to appear). · Zbl 0255.28015
[17] Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175 – 199. · Zbl 0201.56305 · doi:10.2307/2373276 · doi.org
[18] Karl Sigmund, Generic properties of invariant measures for Axiom \? diffeomorphisms, Invent. Math. 11 (1970), 99 – 109. · Zbl 0193.35502 · doi:10.1007/BF01404606 · doi.org
[19] K. Sigmund, Ergodic averages for axiom A diffeomorphisms, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 (1971), 319 – 324. · Zbl 0214.15901 · doi:10.1007/BF00538377 · doi.org
[20] Karl Sigmund, On mixing measures for axiom A diffeomorphisms, Proc. Amer. Math. Soc. 36 (1972), 497 – 504. · Zbl 0225.28013
[21] Karl Sigmund, On the space of invariant measures for hyperbolic flows, Amer. J. Math. 94 (1972), 31 – 37. · Zbl 0242.28014 · doi:10.2307/2373591 · doi.org
[22] Karl Sigmund, Normal and quasiregular points for automorphisms of the torus, Math. Systems Theory 8 (1974/75), no. 3, 251 – 255. · Zbl 0297.28020 · doi:10.1007/BF01762674 · doi.org
[23] Bodo Volkmann, Über Hausdorffsche Dimensionen von Mengen, die durch Zifferneigenschaften charakterisiert sind. VI, Math. Z. 68 (1958), 439 – 449 (German). · Zbl 0079.07903 · doi:10.1007/BF01160360 · doi.org
[24] Benjamin Weiss, Topological transitivity and ergodic measures, Math. Systems Theory 5 (1971), 71 – 75. · Zbl 0212.40103 · doi:10.1007/BF01691469 · doi.org
[25] Benjamin Weiss, Subshifts of finite type and sofic systems, Monatsh. Math. 77 (1973), 462 – 474. · Zbl 0285.28021 · doi:10.1007/BF01295322 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.