Zur Extrapolation in Markoffschen Entscheidungsmodellen mit Diskontierung. (German) Zbl 0288.90085


90C40 Markov and semi-Markov decision processes
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
Full Text: DOI


[1] Albrecht, J.: Fehlerschranken und Konvergenzbeschleunigung bei einer monotonen oder alternierenden Iterationsfolge. Num. Math.4, 196–208, 1962. · Zbl 0107.33301
[2] Denardo, E. V.: Contraction Mappings in the Theory Underlying Dynamic Programming. SIAM Review9, 165–177, 1967. · Zbl 0154.45101
[3] Finkbeiner, B., undW. Runggaldier: Ein Wertiterationsalgorithmus für unendliche sequentielle Entscheidungsprozesse mit Diskontierung. In:R. Henn, H. P. Künzi, H. Schubert (Hrsg.), Operations Research Verfahren VI (1. Oberwolfach-Tagung über OR 1968), 124–131, Meisenheim 1969. · Zbl 0213.45701
[4] Hastings, N. A. J.: Some Notes on Dynamic Programming and Replacement. Operat. Res. Quart.19, 453–464, 1968.
[5] –: Optimization of Discounted Markov Decision Problems. Operat. Res. Quart.20, 499–500, 1969.
[6] –: Bounds on the Gain of a Markov Decision Process. Operat. Res.19, 240–244, 1971. · Zbl 0216.54804
[7] Hitchcock, D. F., andJ. B. MacQueen: On Computing the Expected Discounted Return in a Markov Chain. Nav. Res. Logist. Quart.17, 237–241, 1970. · Zbl 0205.48201
[8] Howard, R. A.: Dynamic Programming and Markov Processes. The MIT Press, Cambridge 1960. · Zbl 0091.16001
[9] Jewell, W.S.: Markov-Renewal Programming I and II. Operat. Res.3, 938–971, 1963. · Zbl 0126.15905
[10] Mac Queen, J.: A Modified Dynamic Programming Method for Markovian Decision Problems. J. Math. Anal. Appl.14, 38–43, 1966. · Zbl 0141.17203
[11] –: A Test for Suboptimal Actions in Markovian Decision Problems. Operat. Res.15, 559–561, 1967. · Zbl 0171.18401
[12] Morton, T. E.: On the Asymptotic Convergence Rate of Cost Differences for Markovian Decision Processes. Operat. Res.19, 244–248, 1971. · Zbl 0216.26904
[13] Odoni, A. R.: On Finding the Maximal Gain for Markov Decision Processes. Operat. Res.17, 857–860, 1969. · Zbl 0184.23202
[14] Porteus, E. L.: Some Bounds for Discounted Sequential Decision Processes. Management Science18, 7–11, 1971. · Zbl 0232.90004
[15] Reetz, D.: Solution of a Markovian Decision Problems by Successive Overrelaxation. Zeitschr. f. Operat. Res.17, 29–32, 1973. · Zbl 0249.90075
[16] Schellhaas, H.: Regenerative stochastische Entscheidungsprozesse mit endlich vielen Zuständen. In:R. Henn, H. P. Künzi, H. Schubert (Hrsg.): Operations Research Verfahren XIII (IV. Oberwolfach-Tagung über OR 1971), 332–357, Meisenheim 1972. · Zbl 0251.90054
[17] Schweitzer, P. J.: Multiple Policy Improvements in Undiscounted Markov Renewal Programming. Operat. Res.19, 784–793, 1971. · Zbl 0268.90064
[18] Shapiro, J. F.: Turnpike Planning Horizons for a Markovian Decision Model. Management Science14, 292–300, 1968. · Zbl 0155.28602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.