×

zbMATH — the first resource for mathematics

Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. (English) Zbl 0289.14010

MSC:
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
14B15 Local cohomology and algebraic geometry
20G15 Linear algebraic groups over arbitrary fields
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Altman, A; Kleiman, S, Introduction to Grothendieck duality theory, () · Zbl 0215.37201
[2] Auslander, M; Buchsbaum, D.A, Codimension and multiplicity, Ann. of math., Corrections, Ann. of math., 70, 395-397, (1959)
[3] Barger, S.F, Generic perfection and theory of grade, (), 365-368, see also · Zbl 0265.13007
[4] Barshay, J, On the zeta function of biprojective complete intersections, Trans. amer. math. soc., 135, 447-458, (1969) · Zbl 0174.24302
[5] Barshay, J, Graded algebras of powers of ideals generated by A-sequences, J. algebra, 25, 90-99, (1973) · Zbl 0256.13017
[6] Barshay, J, Determinantal varieties, monomial semigroups, and algebras associated with ideals, (), 16-22 · Zbl 0273.14021
[7] Bass, H, On the ubiquity of Gorenstein rings, Math. Z., 82, 8-28, (1963) · Zbl 0112.26604
[8] Bertin, M.-J, Anneaux d’invariants d’anneaux de polynomes, en caractéristique p, C.R. acad. sci. Paris Sér. A, 264, 653-656, (1967) · Zbl 0147.29503
[9] Borel, A, Linear algebraic groups, (1969), Benjamin New York · Zbl 0186.33201
[10] Brugesser, H; Mani, P, Shellable decompositions of cells and spheres, Math. scand., 29, 197-205, (1971) · Zbl 0251.52013
[11] Buchsbaum, D.A; Eisenbud, D, What makes a complex exact?, J. algebra, 25, 259-268, (1973) · Zbl 0264.13007
[12] Buchsbaum, D.A; Rim, D.S, A generalized Koszul complex. II. depth and multiplicity, Trans. amer. math. soc., 111, 197-224, (1964) · Zbl 0131.27802
[13] Chevalley, C, Invariants of finite groups generated by reflections, Amer. J. math., 77, 778-782, (1955) · Zbl 0065.26103
[14] Chow, W.L, On unmixedness theorem, Amer. J. math., 86, 799-822, (1964) · Zbl 0146.17203
[15] Cohen, I.S, On the structure and ideal theory of complete local rings, Trans. amer. math. soc., 59, 54-106, (1946) · Zbl 0060.07001
[16] Dieudonné, J.A, Algebraic geometry, Advances in math., 3, 233-321, (1969) · Zbl 0185.49102
[17] Dieudonné, J.A; Carrell, J.B, Invariant theory, old and new, (1971), Academic Press New York · Zbl 0258.14011
[18] Eagon, J.A, Ideals generated by the subdeterminants of a matrix, () · Zbl 0167.31202
[19] Eagon, J.A, Examples of Cohen-Macaulay rings which are not Gorenstein, Math. Z., 109, 109-111, (1969) · Zbl 0184.29201
[20] Eagon, J.A; Hochster, M, R-sequences and indeterminates, Quart. J. math. Oxford ser., 25, 2, 61-71, (1974) · Zbl 0278.13008
[21] Eagon, J.A; Northcott, D.G, Ideals defined by matrices and a certain complex associated with them, (), 188-204 · Zbl 0106.25603
[22] Eagon, J.A; Northcott, D.G, Generically acyclic complexes and generically perfect ideals, (), 147-172 · Zbl 0225.13004
[23] Fogarty, J, Invariant theory, (1969), Benjamin New York · Zbl 0191.51701
[24] Grothendieck, A, Éléments de géométrie algébrique, chap. III, part 1, Inst. hautes études sci. publ. math., 11, (1961)
[25] Grothendieck, A, Éléments de géométrie algébrique, chap. IV, part 2, Inst. hautes études sci. publ. math., Inst. hautes études sci. publ. math., 24, (1965) · Zbl 0135.39701
[26] Grothendieck, A, Local cohomology, (), (Notes by R. Hartshorne) · Zbl 0185.49202
[27] Gulliksen, T.H; Negard, O.G, Un complexe résolvent pour certains idéaux déterminantiels, C.R. acad. sci. Paris Sér. A, 274, 16-19, (1972) · Zbl 0238.13015
[28] Hochster, M, Generically perfect modules are strongly generically perfect, Proc. London math. soc., 23, 3, 477-488, (1971) · Zbl 0232.13014
[29] Hochster, M, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of math., 96, 318-337, (1972) · Zbl 0233.14010
[30] Hochster, M, Grassmannians and their Schubert subvarieties are arithemtically Cohen-Macaulay, J. algebra, 25, 40-57, (1973) · Zbl 0256.14024
[31] Hochster, M, Expanded radical ideals and semiregular ideals, Pacific J. math., 44, 553-568, (1973) · Zbl 0257.13001
[32] \scM. Hochster, Grade-sensitive modules and perfect modules, to appear in Proc. London Math. Soc. · Zbl 0289.13006
[33] Hochster, M, Criteria for equality of ordinary and symbolic powers of primes, Math. Z., 133, 53-66, (1973) · Zbl 0251.13012
[34] Hochster, M; Eagon, J.A, A class of perfect determinantal ideals, Bull. amer. math. soc., 76, 1026-1029, (1970) · Zbl 0201.37201
[35] Hochster, M; Eagon, J.A, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. math., 93, 1020-1058, (1971) · Zbl 0244.13012
[36] Hochster, M; Ratliff, L.J, Five theorems on Macaulay rings, Pacific J. math., 44, 147-172, (1973) · Zbl 0239.13016
[37] Hodge, W.V.D; Pedoe, D, ()
[38] Igusa, J, On the arithmetic normality of the Grassmann variety, (), 309-313 · Zbl 0055.39002
[39] Kaplansky, I, Commutative rings, (1970), Allyn and Bacon Boston · Zbl 0203.34601
[40] Kempf, G, Schubert methods with an application to algebraic curves, Lecture notes, (1971), Amsterdam · Zbl 0223.14018
[41] Kempf, G; Knudsen, F; Mumford, D; St. Donat, B, Toroidal embeddings I, () · Zbl 0271.14017
[42] Kleiman, S.L; Landolfi, J, Geometry and deformation of special Schubert varieties, Compositio math., 23, 407-434, (1971) · Zbl 0238.14006
[43] Kostant, B, Lie group representations on polynomial rings, Amer. J. math., 85, 327-404, (1963) · Zbl 0124.26802
[44] Kunz, E, Characterization of regular local rings of characteristic p, Amer. J. math., 91, 772-784, (1969) · Zbl 0188.33702
[45] Kutz, R.E, Cohen-Macaulay rings and ideal theory in rings of invariants of algebriac groups, () · Zbl 0288.13004
[46] Laksov, D, The arithmetic Cohen-Macaulay character of Schubert schemes, Acta math., 129, 1-9, (1972) · Zbl 0233.14012
[47] Macaulay, F.S, The algebraic theory of modular systems, Cambridge tracts, Vol. 19, (1916) · Zbl 0802.13001
[48] Macdonald, I.G, Algebraic geometry: introduction to schemes, (1968), Benjamin New York · Zbl 0172.22401
[49] Matijevic, J.R, Some topics in graded rings, ()
[50] \scJ. R. Matijevic and P. Roberts, A conjecture of Nagata on graded Cohen-Macaulay rings. (preprint). · Zbl 0278.13013
[51] Matlis, E, Injective modules over Noetherian rings, Pacific J. math., 8, 511-528, (1958) · Zbl 0084.26601
[52] Matsumurá, H, Commutative algebra, (1970), Benjamin New York · Zbl 0211.06501
[53] Mount, K.R, A remark on determinantal loci, J. London math. soc., 42, 595-598, (1967) · Zbl 0171.00401
[54] Mumford, D, Geometric invariant theory, (1965), Springer New York · Zbl 0147.39304
[55] Mumford, D, Lectures on curves on an algebraic surface, Annals of mathematics studies no. 59, (1966) · Zbl 0187.42701
[56] Murthy, M.P, A note on factorial rings, Arch. math. (basel), 15, 418-420, (1964) · Zbl 0123.03401
[57] Musili, C, Postulation formula for Schubert varieties, J. Indian math. soc., 36, 143-171, (1972) · Zbl 0277.14021
[58] \scC. Musili, Some properties of Schubert varieties, preprint. · Zbl 0351.14028
[59] Nagata, M, Complete reducibility of rational representations of a matric group, J. math. Kyoto univ., 1, 87-99, (1961) · Zbl 0106.25201
[60] Nagata, M, Local rings, (1962), Interscience New York · Zbl 0123.03402
[61] Nagata, M, Invariants of a group in an affine ring, J. math. Kyoto univ., 3, 369-377, (1963/1964) · Zbl 0146.04501
[62] Nagata, M, Lectures on the fourteenth problem of Hilbert, () · Zbl 0182.54101
[63] Northcott, D.G, Semi-regular rings and semi-regular ideals, Quart. J. math. Oxford ser., 11, 2, 81-104, (1960) · Zbl 0112.03001
[64] Northcott, D.G, Some remarks on the theory of ideals defined by matrices, Quart. J. math. Oxford ser., 14, 2, 193-204, (1963) · Zbl 0116.02504
[65] Northcott, D.G, Additional properties of generically acyclic projective complexes, Quart. J. math. Oxford ser., 20, 2, 65-80, (1969) · Zbl 0203.05301
[66] Northcott, D.G, Grade sensitivity and generic perfection, Proc. London math. soc., 20, 3, 597-618, (1970) · Zbl 0196.06701
[67] Peskine, C; Szpiro, L, Dimension projective finie et cohomologie locale, Inst. hautes études sci. publ. math., 42, 47-119, (1973) · Zbl 0268.13008
[68] Poon, K.Y, A resolution of certain perfect ideals defined by some matrices, ()
[69] Rees, D, The grade of an ideal or module, (), 28-42 · Zbl 0079.26602
[70] Room, T.G, The geometry of determinantal loci, (1938), Cambridge University Press · Zbl 0020.05402
[71] Samuel, P, Lectures on unique factorization domains, () · Zbl 0184.06601
[72] Serre, J.-P, Faisceaux algébriques cohérents, Ann. of math., 61, 197-278, (1955) · Zbl 0067.16201
[73] Serre, J.-P, Sur la topologie des variétés algébriques en caractéristique p, () · Zbl 0098.13103
[74] Serre, J.-P, On the fundamental group of a unirational variety, J. London math. soc., 34, 481-484, (1959) · Zbl 0097.36301
[75] Serre, J.-P, Algèbre locale-multiplicités, () · Zbl 0091.03701
[76] Sharp, R.Y, Local cohomology theory in commutative algebra, Quart. J. math. Oxford ser., 21, 2, 425-434, (1970) · Zbl 0204.06003
[77] Sharpe, D.W, On certain polynomial ideals defined by matrices, Quart. J. math. Oxford ser., 15, 2, 155-175, (1964) · Zbl 0119.03601
[78] Sharpe, D.W, The syzygies and semi-regularity of certain ideals defined by matrices, Proc. London math. soc., 15, 3, 645-679, (1965) · Zbl 0136.31803
[79] \scT. Svanes, Coherent cohomology on Schubert subschemes of flag schemes and applications, preprint. · Zbl 0308.14008
[80] Taylor, D, Ideals generated by monomials in an R-sequence, ()
[81] Weyl, H, The classical groups, (1946), Princeton University Press · JFM 65.0058.02
[82] Zariski, O; Samuel, P, ()
[83] Mumford, D, Introduction to algebraic geometry, () · Zbl 0114.13106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.