×

zbMATH — the first resource for mathematics

Korteweg-de Vries equation and generalizations. VI: Methods for exact solution. (English) Zbl 0291.35012

MSC:
35G20 Nonlinear higher-order PDEs
35B40 Asymptotic behavior of solutions to PDEs
35C05 Solutions to PDEs in closed form
34L99 Ordinary differential operators
76B25 Solitary waves for incompressible inviscid fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ablowitz, J. Math. Phys. 14 pp 1277– (1973)
[2] Berezin, Soviet Phys. JETP 24 pp 1049– (1967)
[3] Cole, Quart. Appl. Math. 9 pp 225– (1951)
[4] Gardner, Phys. Rev. Letters 19 pp 1095– (1967)
[5] and , Similarity in the asymptotic behavior of collision-free hydromagnetic waves and water waves, New York Univ., Courant Inst. Math. Sci., Res. Rept. NYO-9082, 1960.
[6] and , On the determination of a differential equation from its spectral function, Amer. Math. Soc. Transl., Ser., 2, 1, 1955, pp. 253–304. · Zbl 0066.33603
[7] Hirota, Phys. Rev. Letters 27 pp 1192– (1971)
[8] Hopf, Comm. Pure Appl. Math. 3 pp 201– (1950)
[9] Kay, J. Appl. Phys. 27 pp 1503– (1956)
[10] Korteweg, Phil. Mag. 39 pp 422– (1895) · doi:10.1080/14786449508620739
[11] Asymptotology in numerical computation: Progress and plans on the Fermi-Pasta-Ulam problem, Proc. IBM Scientific Computing Symp. on Large-Scale Problems in Physics, IBM Data Processing Division, White Plains, New York, 1965.
[12] Kruskal, J. Math. Phys. 11 pp 952– (1970)
[13] and , Quantum Mechanics, Nonrelativistic Theory, Pergamon Press, Inc., New York, 1958.
[14] Lax, Comm. Pure Appl. Math. 21 pp 467– (1968)
[15] Nonlinear partial differential equations of evolution, Actes du Congrés International des Mathématiciens, Gauthier-Villars, 1971, Tome 2, pp. 831–840.
[16] Leibovich, J. Fluid Mech. 42 pp 803– (1970)
[17] Levinson, Phys. Rev. 89 pp 755– (1953)
[18] Miura, J. Math. Phys. 9 pp 1202– (1968)
[19] Miura, J. Math. Phys. 9 pp 1204– (1968)
[20] Nariboli, Engineering Res. Inst. Preprint 442 (1969)
[21] Shen, SIAM J. Appl. Math. 17 pp 260– (1969)
[22] Su, J. Math. Phys. 10 pp 536– (1969)
[23] Tanaka, Publ. Res. Inst. Math. Sci. 8 pp 419– (1972/1973)
[24] Taniuti, J. Phys. Soc. Japan 24 pp 941– (1968)
[25] Wadati, J. Phys. Soc. Japan 32 pp 1403– (1972)
[26] Washimi, Phys. Rev. Letters 17 pp 996– (1966)
[27] van Wijngaarden, J. Fluid Mech. 33 pp 465– (1968)
[28] Phenomena associated with the oscillations of a nonlinear model string. The problem of Fermi, Pasta, and Ulam, Proc. Conf. on Mathematical Models in the Physical Sciences, Prentice-Hall, 1963.
[29] A synergetic approach to problems of nonlinear dispersive wave propagation and interaction, Proc. Symp. on Nonlinear Partial Differential Equations, Academic Press, 1967. · Zbl 0183.18104
[30] Zabusky, Phys. Rev. 168 pp 124– (1968)
[31] Zabusky, J. Phys. Soc. Japan 26 pp 196– (1969)
[32] Zabusky, Phys. Rev. Letters 15 pp 240– (1965)
[33] Zakharov, Soviet Phys. JETP 33 pp 538– (1971)
[34] Zakharov, Functional Anal. and Its Appl. 5 pp 280– (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.