×

zbMATH — the first resource for mathematics

The natural factor formulation of the stiffness for the matrix displacement method. (English) Zbl 0291.73051

MSC:
74K99 Thin bodies, structures
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Argyris, J.H., Energy theory theorems and structural analysis, (), 5th reprint 1973
[2] Argyris, J.H., Recent advances in matrix methods of structural analysis, progress in aeronautical science, (1964), Pergamon London · Zbl 0161.21601
[3] Argyris, J.H., Continua and discontinua, (), 1-193, published in the Conference by
[4] Argyris, J.H., Three-dimensional anisotropic and inhomogeneous elastic media; matrix analysis for small and large displacements, Ingenieur archiv, 34, 33-35, (1965) · Zbl 0131.39502
[5] Argyris, J.H.; Scharpf, D.W., The curved tetrahedronal and triangular elements TEC and TRIC for the matrix displacement mehod. part I, small displacements, Aeron. J. roy. aeron. soc., 73, 55-61, (1969)
[6] Argyris, J.H.; Scharpf, D.W., The SHEBA family of shell elements for the matrix displacement method, part I, natural definition of geometry and strains, Aeron. J. roy. aeron. soc., 72, 873-878, (1969)
[7] Argyris, J.H.; Scharpf, D.W., The SHEBA family of shell elements for the matrix displacement method, part II, interpolation scheme and stiffness matrix, Aeron. J. roy. aeron. soc., 72, 878-883, (1968)
[8] Argyris, J.H.; Scharpf, D.W., The SHEBA family of shell elements for the matrix displacement method, part II, large displacements, Aeron. J. roy. aeron. soc., 73, 423-426, (1969)
[9] Argyris, J.H.; Scharpf, D.W., Some general considerations on the natural mode technique, part I, small displacements, Aeron.J. roy. aeron. soc., 73, 219-226, (1969)
[10] Argyris, J.H.; Scharpf, D.W., Some general considerations on the natural mode technique, part II, large displacements, Aeron. J. roy. aeron. soc., 73, 361-368, (1969)
[11] Argyris, J.H.; Haase, M.; Malejannakis, G.A., Natural geometry of surfaces with specific reference to the matrix displacement analysis of shells, ISD report no. 134, (1973), Stuttgart · Zbl 0273.53001
[12] Braun, K.A.; Johnsen, Th.Lunde, Eigencomputation of symmetric hypermatrices using a generalization of the Householder method, () · Zbl 0283.65014
[13] Brönlund, O.E., Die simultane verbesserung einer beliebigen anzahl genäherter eigenvektoren von hermiteschen matrizen. Dr.-ing., ()
[14] Brönlund, O.E.; Johnsen, Th.L., The hypermatrix QR factorization, a hypermatrix generalization of the Householder method, ISD report no. 112, (1971), Stuttgart · Zbl 0296.65013
[15] Brönlund, O.E.; Johnsen, Th.L., QR-factorization of partitioned matrices, Comp. meth. appl. mech. eng., 3, 153-172, (1974) · Zbl 0278.65041
[16] Brönlund, O.E., Computation of the Cholesky factor of a stiffness matrix direct from the factor of its initial quadratic form, ISD report no. 142, (1973), Stuttgart
[17] Von Fuchs, G.; Roy, J.R.; Schrem, E., Hypermatrix solution of large sets of symmetric positive-definite linear equations, part I, computational aspects, Comp. meth. appl. mech. eng., l, 197-216, (1972) · Zbl 0263.65048
[18] Guyan, R.J., Reduction of stiffness and mass matrices, Aiaa j., 3, 380, (1965)
[19] Przemieniecki, J.S., Theory of matrix structural analysis, (1968), McGraw-Hill · Zbl 0177.53201
[20] Rosanoff, R.A.; Gloudeman, J.F.; Levy, S., Numerical conditions of stiffness matrix formulations for frame structures, ()
[21] Roy, J.R., Numerical error in structural solutions, (), 1039-1054
[22] Wilkinson, J.H., Rounding errors in algebraic processes, (1963), Her Majesty’s Stationary Office London · Zbl 0868.65027
[23] Wilkinson, J.H., The algebraic eigenvalue problem, (1965), Clarendon Press Oxford · Zbl 0258.65037
[24] Johnsen, Th.Lunde, On the computation of natural modes of an unsupported vibrating structure by simultaneous iteration, Comp. meth. in appl. mech. eng., 2, 305-322, (1973) · Zbl 0263.73050
[25] ASKA User’s reference manual, ISD report no. 73, (1971), Stuttgart
[26] DYNAN User’s reference manual, ISD report no. 97, (1971), Stuttgart
[27] DYNAN lecture notes with computational examples, ISD report no. 109, (1971), Stuttgart
[28] Johnsen, Th.Lunde; Roy, J.R., On systems of linear equations of the form \(A\^{}\{ t\} Ax = b\), error analysis and certain consequences for structural applications, Comp. meth. in appl. mech. eng., 3, 357-374, (1974) · Zbl 0278.65032
[29] Th, Lunde Johnsen, Die simultane Berechnung von Eigenwerten und Eigenvektoren grosser ungedämpfter Schwingungs probleme mit Starrkörperfreiheitsgraden (Submitted as Dr.-Ing. Thesis to the University of Stuttgart).
[30] Argyris, J.H.; Roy, J.R., On the reduction of numerical error in the matrix displacement method, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.