×

zbMATH — the first resource for mathematics

Good lattice points modulo composite numbers. (English) Zbl 0292.10023

MSC:
11H06 Lattices and convex bodies (number-theoretic aspects)
11A07 Congruences; primitive roots; residue systems
65D30 Numerical integration
PDF BibTeX Cite
Full Text: DOI EuDML
References:
[1] Erdös, P., andS. K. Zaremba: The arithmetic function \(\sum\limits_{d/m} {\frac{{\log d}}{d}} \) (to appear in Demonstratio Math.6).
[2] Hardy, G. H., andE. M. Wright: An Introduction to the Theory of Numbers, 4th edition. Oxford: Clarendon Press. 1960. · Zbl 0086.25803
[3] Hlawka, E.: Uniform distribution modulo 1 and numerical analysis. Compositio Math.16, 92-105 (1964). · Zbl 0146.27602
[4] Korobov, N. M.: Teoretikocislovye metody v priblizhennom analize (Numbertheoretical methods in approximate analysis). Moscow: Fizmatgiz. 1963.
[5] Maisonneuve, D.: Recherche et utilisation des ?bons treillis?. Programmation et résultats numériques, 121-201, in Applications of Number Theory to Numerical Analysis, edited by S. K. Zaremba. New York and London: Academic Press. 1972. · Zbl 0264.65026
[6] Zaremba, S. K.: Good lattice points, discrepancy, and numerical integration. Ann. Mat. Pura Appl. (iv),73, 293-318 (1966). · Zbl 0148.02602
[7] Zaremba, S. K.: La méthode des ?bons treillis? pour le calcul des intégrales multiples, 39-119, in Applications of Number Theory to Numerical Analysis, edited by S. K. Zaremba. New York and London: Academic Press. 1972.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.