zbMATH — the first resource for mathematics

Absolut-(p,1)-summierende identische Operatoren von \(l_u\) in \(l_v\). (German) Zbl 0292.47019

47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
46A45 Sequence spaces (including Köthe sequence spaces)
Full Text: DOI
[1] Grothendieck, Résumé de la théorie métrique des produite tensoriels topologiques, Boletim Soc. Mat. Sao Paulo 8 pp 1– (1956)
[2] Hardy, Bilinear forms bounded in space [p,q], Quart. J. Math. 5 pp 242– (1934) · Zbl 0010.36101
[3] S. Kaczmarz H. Steinhaus 1935
[4] Kwapien, Some remarks on (p,q)-absolutely summing operators in lp-spaces, Studia Math. 29 pp 327– (1968) · Zbl 0182.17001
[5] Littlewood, On bounded bilinear forms in infinite numbers of variables, Quart. J. Math. 1 pp 164– (1930) · JFM 56.0335.01
[6] Mazur, Une remarque sur l’homeomorphie des champs fonctionels, Studia Math. 1 pp 83– (1930)
[7] Orlicz, Über unbedingte Konvergenz in Funktionenräumen, Studia Math. 1 pp 41– (1933) · Zbl 0008.31502
[8] Pietsch, Ideale von Sp-Operatoren in Banachräumen, Studia Math. 38 pp 59– (1970) · Zbl 0213.14505
[9] A. Pietsch 1972
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.