×

zbMATH — the first resource for mathematics

The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. (English) Zbl 0293.65022

MSC:
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shavitt, I.; Bender, C.F.; Pipano, A.; Hosteny, R.P., J. computational phys., 11, 90, (1973)
[2] Cooper, J.L.B., Quart. appl. math., 6, 179, (1948)
[3] Nesbet, R.K., J. chem. phys., 43, 311, (1965)
[4] Shavitt, I., J. computational phys., 6, 124, (1970)
[5] Fadeev, D.K.; Fadeeva, V.N., Computational methods of linear algebra, (1963), Freeman San Francisco, CA, (English Translation), Section 61
[6] Bender, C.F., ()
[7] Bender, C.F.; Davidson, E.R., Phys. rev., 183, 23, (1969)
[8] Karush, W., Pacific J. math., 1, 233, (1951)
[9] Hestenes, M.R., (), Chap. 12
[10] Lanczos, C., J. res. nat. bur. stand., 45, 255, (1950)
[11] Weinstein, D.H., (), 529
[12] Kahn, L.R.; Hay, P.J.; Shavitt, I., J. chem. phys., 61, 3530, (1974)
[13] Roos, B., Chem. phys. lett., 15, 153, (1972)
[14] \scR. F. Hausman, C. F. Bender, and S. D. Bloom, private communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.