×

zbMATH — the first resource for mathematics

Multivariate distributions: inequalities and limit theorems. (English. Russian original) Zbl 0295.60013
J. Sov. Math. 2, 475-488 (1974); translation from Itogi Nauki Tekh., Ser. Teor. Veroyatn., Mat. Statist., Teor. Kibernet. 10, 5-24 (1972).
MSC:
60E05 Probability distributions: general theory
60F05 Central limit and other weak theorems
60-02 Research exposition (monographs, survey articles) pertaining to probability theory
62E10 Characterization and structure theory of statistical distributions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. V. Arkharov, ?On the Chebyshev inequality for the two-dimensional case,? Teor. Veroyat. i Prim.,16, No. 2, 353?360 (1971).
[2] A. Bikyalis, ?Refinement of the remainder term in the multidimensional central limit theorem,? Litovsk. Matem. Sborn.,4, No. 2, 153?158 (1964).
[3] A. Bikyalis, ?Remainder terms in multidimensional limit theorems,? Dokl. Akad. Nauk SSSR,168, No. 4, 731?732 (1966).
[4] A. Bikyalis, ?Remainder terms in asymptotic expansions for characteristic functions and their derivatives,? Litovsk. Matem. Sborn.,7, No. 4, 571?582 (1968).
[5] A. Bikyalis, ?Asymptotic expansions for the densities and distributions of sums of independent identically distributed random vectors,? Litovsk. Matem. Sborn.,8, No. 3, 405?422 (1969).
[6] A. Bikyalis, ?Asymptotic expansions for distributions of sums of independent identically distributed lattice random vectors,? Teor. Veroyat. i Prim.,14, No. 3, 499?507 (1969).
[7] A. Bikyalis, ?An asymptotic expansion for products of multivariate characteristic functions,? Teor. Veroyat. i Prim.,14, No. 3, 508?511 (1969).
[8] A. Bikyalis, ?Inequalities for multivariate characteristic functions,? Litovsk. Matem. Sborn.,10, No. 1, 5?12 (1970).
[9] A. Bikyalis, ?Asymptotic expansions for a distribution of sums of independent nonlattice random vectors,? Litovsk. Matem. Sborn.,10, No. 4, 673?679 (1970).
[10] A. Bikyalis, ?On the central limit theorem in Rk(I),? Litovsk. Matem. Sborn.,11, No. 1, 27?58 (1971).
[11] A. Bikyalis, ?On the central limit theorem in Rk(II),? Litovsk. Matem. Sborn.,12, No. 1, 73?84 (1972).
[12] A. Bikyalis, ?On the central limit theorem in Rk(III),? Litovsk. Matem. Sborn.,12, No. 3 (1972).
[13] A. A. Borovkov and B. A. Rogozin, ?On the central limit theorem in the multidimensional case,? Teor. Veroyat. i Prim.,10, No. 1, 61?69 (1965).
[14] N. N. Vakhaniya, ?Probability distributions in linear spaces,? Trudy Vychisl. Tsentra Akad. Nauk Gruz. SSR, 10, No. 3 (1971).
[15] N. N. Vakhaniya and N. P. Kandelaki, ?Estimate of the rate of convergence in the central limit theorem,? Soobshch. Akad. Nauk Gruz. SSR,50, No. 2, 273?276 (1968).
[16] N. N. Vakhaniya and N. P. Kandelaki, ?Estimate of the rate of convergence in the central limit theorem in Hilbert space,? Trudy Vychisl. Tsentra Akad. Nauk Gruz. SSR,9, No. 1, 150?160 (1969).
[17] I. M. Vinogradov, Method of Trigonometric Sums in Number Theory [in Russian], Nauka, Moscow (1971), 159 pages. · Zbl 0229.10020
[18] W. Hoeffding, ?On a theorem of V. M. Zolotarev,? Teor. Veroyat. i Prim.,9, No. 1, 96?99 (1964).
[19] V. M. Zolotarev, ?A probability problem,? Teor. Veroyat. i Prim.,6, No. 2, 219?222 (1961).
[20] V. M. Zolotarev, ?Remarks on multivariate inequalities of the Bernshtein-Kolmogorov type,? Teor. Veroyat. i Prim.,13, No. 2, 289?294 (1968).
[21] V. M. Zolotarev, ?Estimates of the difference of distributions in Lévy metric,? Trudy Matem. Inst. Akad. Nauk SSSR,112, 224?231 (1971).
[22] V. M. Kalinin, ?Convergent and asymptotic expansions for probability distributions,? Teor. Veroyat. i Prim.,12, No. 1, 24?38 (1967).
[23] V. M. Kalinin, ?Limiting properties of probability distributions,? Trudy Matem. Inst. Akad. Nauk SSSR,104, 88?134 (1968).
[24] N. P. Kandelaki and V. V. Sazonov, ?Central limit theorem for random elements assuming values in Hilbert space,? Teor. Veroyat. i Prim.,9, No. 1, 43?52 (1964). · Zbl 0147.17201
[25] V. M. Kruglov, ?Convergence of distributions of sums of independent random variables with values in Hilbert space,? Teor. Veroyat. i Prim.,16, No. 2, 346?347 (1971).
[26] V. M. Kruglov, ?Convergence of distributions of sums of independent random variables with values in Hilbert space to normal and Poisson distributions,? Dokl. Akad. Nauk SSSR,197, No. 6, 1258?1260 (1971).
[27] Yu. V. Linnik and V. L. Éidlin, ?Remark on analytical transformations of normal vectors,? Teor. Veroyat. i Prim.,13, No. 4, 751?754 (1968).
[28] M. Mamatov and M. K. Khalikov, ?Global limit theorems for density functions in the multidimensional case,? Izv. Akad. Nauk Uzbek SSR, Ser. Fiz.-Matem. Nauk, No. 1, 13?21 (1964).
[29] S. V. Nagaev and D. Kh. Fuk, ?Probabilistic inequalities for sums of independent random variables,? Teor. Veroyat. i Prim.,16, No. 4, 660?675 (1971).
[30] V. Paulauskas, ?Estimate of the rate of convergence in the multidimensional central limit theorem (I),? Litovsk. Matem. Sborn.,9, No. 2, 329?343 (1969).
[31] V. Paulauskas, ?Estimate of the rate of convergence in the multidimensional central limit theorem (II),? Litovsk. Matem. Sborn.,9, No. 4, 791?815 (1969).
[32] V. Paulauskas and A. Slushnis, ?Estimate of the rate of convergence in the two-dimensional central limit theorem,? Litovsk. Matem. Sborn.,8, No. 3, 591?595 (1969).
[33] A. V. Prokhorov, ?Multivariate analogs of the Bernshtein inequalities,? Teor. Veroyat. i Prim.,13, No. 2, 275?288 (1968).
[34] A. V. Prokhorov, ?Multivariate Bernshtein inequalities,? Teor. Veroyat. i Prim.,13, No. 3, 462?470 (1968).
[35] A. V. Prokhorov, ?A probabilistic inequality,? Matem. Zametki,3, No. 6, 731?738 (1968.
[36] Yu. V. Prokhorov, ?Extension of the Bernshtein inequalities to the multivariate case,? Teor. Veroyat. i Prim.,13, No. 2, 266?274 (1968).
[37] Yu. V. Prokhorov and V. V. Sazonov, ?Estimates of the rate of convergence in the central limit theorem for the infinite-dimensional case,? in: Soviet-Japanese Symposium on Probability Theory, 1969 [in Russian], Part I, Novosibirsk (1969), pp. 223?229.
[38] E. L. Rvacheva, ?Multivariate local theorem for limiting stable distributions,? Trudy Inst. Matem, i Mekhan. Akad. Nauk Ukr. SSR,10, No. 1, 106?121 (1953).
[39] E. L. Rvacheva, ?Domains of attraction for multivariate stable distributions,? Nauk. Zap. L’vis’k, Univ.,29, No. 6 (1), 5?44 (1955).
[40] V. I. Rotar’, ?Rate of convergence in the multidimensional central limit theorem,? Teor. Veroyat. i Prim.,15, No. 2, 370?372 (1970).
[41] V. I. Rotar’, ?Nonuniform estimate of the convergence rate in the multidimensional central limit theorem,? Teor. Veroyat. i Prim.,15, No. 4, 647?665 (1970).
[42] S. M. Sadikova, ?Two-dimensional analogs of the Esseen inequality in application to the central limit theorem,? Teor. Veroyat. i Prim.,11, No. 3, 369?380 (1966).
[43] S. M. Sadikova, ?Certain inequalities for characteristic functions,? Teor. Veroyat. i Prim.,11, No. 3, 500?506 (1966).
[44] S. M. Sadikova, ?Distance between distributions with respect to their values on convex sets,? Dokl. Akad. Nauk SSSR,176, No. 4, 787?789 (1967). · Zbl 0169.49502
[45] S. M. Sadikova, ?On the multidimensional central limit theorem,? Teor. Veroyat. i Prim.,13, No. 1, 164?170 (1968). · Zbl 0196.20503
[46] V. V. Sazonov, ?Estimate of the convergence rate in the multidimensional central limit theorem,? Teor. Veroyat. i Prim.,12, No. 1, 82?95 (1967).
[47] V. V. Sazonov, ?Estimate of the convergence rate in the multidimensional central limit theorems,? [in Russian], Proc. Sixth Berkeley Sympos. Mathematical Statistics and Probability (1970).
[48] V. V. Sazonov, ?Convergence rate in the multidimensional central limit theorem,? Teor. Veroyat. i Prim.,13, No. 1, 191?194 (1968).
[49] G. N. Sakovich, ?On multivariate stable distributions,? Teor. Veroyat. i Prim.,5, No. 2, 254 (1960).
[50] I. N. Sanov, ?A method for finding the asymptotic behavior of probabilities of large deviations of nonlinear stochastic variables from a multinomial distribution and its applications,? Teor. Veroyat. i Prim.,10, No. 4, 761?763 (1965).
[51] O. V. Sarmanov, ?Remarks on uncorrelated Gaussian dependent random variables,? Teor. Veroyat. i Prim.,12, No. 1, 141?143 (1967). · Zbl 0173.20804
[52] O. V. Sarmanov, ?A property of the correlation coefficient,? Teor. Veroyat. i Prim.,15, No. 3, 562?563 (1970).
[53] A. V. Skorokhod, ?Remark on Gaussian measures in Banach space,? Teor. Veroyat. i Prim.,15, No. 3, 519?520 (1970).
[54] M. K. Khalikov, ?Local limit theorem for sums of independent random vectors,? Izv. Akad. Nauk Uzbek SSR, Ser. Fiz.-Matem. Nauk, No. 2, 95?105 (1958). · Zbl 0227.60015
[55] T. L. Shervashidze, ?Limit theorems for a class of random vectors,? Soobshch. Akad. Nauk Gruz. SSR,61, No. 1, 21?24 (1971).
[56] T. L. Shervashidze, ?Uniform estimate of the convergence rate in a multidimensional local limit theorem for densities,? Teor. Veroyat. i Prim.,16, No. 4, 765?767 (1971).
[57] T. L. Shervashidze and L. I. Saulis, ?Multidimensional limit theorems for density functions,? Soobshch. Akad. Nauk Gruz. SSR,60, No. 3, 533?536 (1970).
[58] Sh. S. Ébralidze, ?Inequalities for probabilities of large deviations in the multivariate case,? Teor. Veroyat. i Prim.,16, No. 4, 755?759 (1971).
[59] V. V. Yurinskii, ?Infinite-dimensional version of the Bernshtein inequalities,? Teor. Veroyat. i Prim.,15, No. 1, 106?107 (1970).
[60] V. V. Yurinskii, ?Inequalities for large deviations of certain stochastic variables,? Teor. Veroyat. i Prim.,16, No. 2, 386?389 (1971).
[61] V. V. Yurinskii, ?Application of the van der Corput lemma to the estimation of characteristic functions of certain singular distributions,? Teor. Veroyat. i Prim.,16, No. 2, 389?391 (1971).
[62] V. V. Yurinskii, ?Estimates for the characteristic functions of certain degenerate multivariate distributions,? Teor. Veroyat. i Prim.,17, No. 1, 99?110 (1972).
[63] B. von Bahr, ?On the central limit theorem in Rk,? Ark. Matem.,7, No. 1, 61?69 (1967). · Zbl 0221.60013 · doi:10.1007/BF02591677
[64] B. von Bahr, ?Multidimensional integral limit theorems,? Ark. Matem.,7, No. 1, 71?88 (1967). · Zbl 0221.60014 · doi:10.1007/BF02591678
[65] H. Bergström, ?On the central limit theorem in Rk; the remainder term for special Borel sets,? Z. Wahrscheinlichkeitstheor. und verw. Geb.,16, No. 2, 113?126 (1969). · Zbl 0184.41303 · doi:10.1007/BF00537517
[66] R. N. Bhattacharya, ?The central limit theorem in Rk, k>1, and normal approximation to the probabilities of Borel sets,? Ann. Math. Statist.,39, No. 4, 1360?1361 (1968). · doi:10.1214/aoms/1177698267
[67] R. N. Bhattacharya, ?Rates of weak convergence for the multidimensional central limit theorem,? Teor. Veroyat. i Prim.,15, No. 1, 69?85 (1970).
[68] R. N. Bhattacharya, ?Berry-Esseen bounds for the multidimensional central limit theorem,? Bull. Amer. Math. Soc.,74, No. 2, 285?287 (1968). · Zbl 0179.48102 · doi:10.1090/S0002-9904-1968-11923-8
[69] Z. Ciesielski, ?Lectures on Brownian motion, heat conduction, and potential theory,? Lect. Notes Ser. Math. Inst. Aarhus Univ., No. 3 (1966).
[70] R. Cuppens, ?Ensembles indépendants et décomposition des fonctions charactéristiques,? Compt. Rend.,272, No. 22, A1464-A1466 (1971). · Zbl 0216.21102
[71] X. Fernique, ?Intégrabilité des vecteurs gaussiens,? Compt. Rend.,270, No. 25, A1698-A1699 (1970). · Zbl 0206.19002
[72] C. D. Firestone and J. E. Hanson, ?Uncorrelated Gaussian dependent random variables,? Amer. Math. Monthly,70, No. 6, 659?660 (1963). · doi:10.2307/2311641
[73] J. L. Fleiss, ?On the distribution of a linear combination of independent chi-squares,? J. Amer. Statist. Assoc.,66, No. 333, 142?144 (1971). · Zbl 0218.62014 · doi:10.1080/01621459.1971.10482234
[74] R. C. Griffiths, ?Infinitely divisible multivariate gamma distributions,? Sankhya (Indian J. Statist.),A32, No. 4, 393?404 (1970). · Zbl 0221.60006
[75] D. A. Harville, ?On the distribution of linear combinations of noncentral chi-squares,? Ann. Math. Statist.,42, No. 2, 809?811 (1971). · Zbl 0218.62016 · doi:10.1214/aoms/1177693437
[76] A. Heppes, ?On the determination of probability distributions of more dimensions by their projections,? Acta Math.,7, Nos. 3?4, 403?410 (1956). · Zbl 0072.34402
[77] W. Hoeffding, ?On sequences of sums of independent random vectors,? Proc. Fourth Berkeley Sympos. Mathematical Statistics and Probability, 1960, Vol. 2, Univ. Calif. Press, Berkeley-Los Angeles (1961), pp. 213?226. · Zbl 0211.20605
[78] W. Hoeffding, ?On probabilities of large deviations,? Proc. Fifth Berkeley Sympos. Mathematical Statistics and Probability, 1965?66, Vol. 1, Berkeley-Los Angeles (1967), pp. 203?219.
[79] R. Jajte, ?On stable distributions in Hilbert space,? Studia Math.,30, No. 1, 63?71 (1968). · Zbl 0175.47103
[80] Jogdeo Kumar, ?A simple proof of an inequality for multivariate normal probabilities of rectangles,? Ann. Math. Statist.,41, No. 4, 1357?1359 (1970). · Zbl 0225.62068 · doi:10.1214/aoms/1177696913
[81] N. L. Johnson and S. Kotz, Tables of Distributions of Quadratic Forms in Central Normal Variables, Part I, Inst. Statist. Mimeo. Ser. No. 543, Dept. Statist., Univ. North Carolina, Chapel Hill, N. C. (1967).
[82] N. L. Johnson and S. Kotz, Tables of Distributions of Quadratic Forms in Central Normal Variables, Part II, Inst. Statist. Mimeo. Ser., No. 557, Dept. Statist., Univ. North Carolina, Chapel Hill, N. C. (1967).
[83] S. Karlin and W. J. Studden, Tschebysheff Systems: With Applications in Analysis and Statistics, Interscience, New York (1966). · Zbl 0153.38902
[84] D. S. Kendall, ?On the number of lattice points inside a random oval,? Quart. J. Math.,19, No. 1, 1?26 (1948). · Zbl 0031.11201 · doi:10.1093/qmath/os-19.1.1
[85] C. G. Khatri, ?Further contributions to some inequalities for normal distributions and their applications to simultaneous confidence bounds,? Ann. Inst. Statist. Math.,22, No. 3, 451?458 (1970). · Zbl 0294.62013 · doi:10.1007/BF02506363
[86] J. Kiefer, ?On large deviations of the empiric d.f. of vector chance variables and a law of iterated logarithm,? Pacif. J. Math.,11, No. 2, 649?660 (1961). · Zbl 0119.34904 · doi:10.2140/pjm.1961.11.649
[87] S. Kotz, N. L. Johnson, and D. W. Boyd, ?Series representations of distributions of quadratic forms in normal variables. I. Central case,? Ann. Math. Statist.,38, No. 3, 823?837 (1967). · Zbl 0146.40906 · doi:10.1214/aoms/1177698877
[88] S. Kotz, N. L. Johnson, and D. W. Boyd, ?Series representations of distributions of quadratic forms in normal variables. II. Noncentral case,? Ann. Math. Statist.,38, No. 3, 838?848 (1967). · Zbl 0146.40906 · doi:10.1214/aoms/1177698878
[89] S. Kullback, ?A bound for the variation of Gaussian densities,? Ann. Math. Statist.,40, No. 6, 2180?2182 (1969). · Zbl 0187.15002 · doi:10.1214/aoms/1177697295
[90] H. J. Landau and L. A. Shepp, ?On the supremum of a Gaussian process,? Sankhya (Indian J. Statist.),A32, No. 4, 369?378 (1970). · Zbl 0218.60039
[91] G. Marsaglia, Tables of the Distribution of Quadratic Forms of Ranks Two and Three, Tech. Rep. No. D1-82-0015-1, Boeing Sci. Res. Lab. (1960).
[92] A. W. Marshall and I. Olkin, ?Multivariate Chebyshev inequalities,? Ann. Math. Statist.,31, No. 4, 1001?1014 (1960). · Zbl 0244.60013 · doi:10.1214/aoms/1177705673
[93] R. M. Meyer, ?Note on a multivariate form of Bonferroni’s inequalities,? Ann. Math. Statist.,40, No. 2, 692?693 (1969). · Zbl 0175.47201 · doi:10.1214/aoms/1177697743
[94] S. Mudholkar Govind and S. R. S. Rao Poduri, ?Some sharp multivariate Tchebycheff inequalities,? Ann. Math. Statist.,38, No. 2, 393?400 (1967). · Zbl 0171.16403 · doi:10.1214/aoms/1177698954
[95] S. J. Press, ?Linear combinations of noncentral chi-square variates,? Ann. Math. Statist.,37, No. 2, 480?487 (1966). · Zbl 0142.16002 · doi:10.1214/aoms/1177699531
[96] R. Rao Ranga, ?On the central limit theorem in Rk,? Bull. Amer. Math. Soc.,67, No. 4, 359?361 (1961). · Zbl 0099.13003 · doi:10.1090/S0002-9904-1961-10615-0
[97] W. Richter, ?Mehrdimensionale Grenzwertsätze für grosse Abweichungen und ihre Anwendung auf die Verteilung vonx 2,? Teor. Veroyat. i Prim.,9, No. 1, 31?42 (1964).
[98] V. V. Sazonov, ?On the multidimensional central limit theorem,? Sankhya (Indian J. Statist.),A30, No. 2, 181?204 (1968). · Zbl 0196.20801
[99] M. Sharpe, ?Operator-stable probability distributions on vector groups,? Trans. Amer. Math. Soc.,136, No. 1, 51?65 (1969). · doi:10.1090/S0002-9947-1969-0238365-3
[100] H. Solomon, Distribution of Quadratic Forms-Tables and Applications, Tech. Rep. No. 45, Appl. Math. Lab., Stanford Univ. (1960).
[101] J. T. Webster, ?On the application of the method of Das in evaluating a multivariate normal integral,? Biometrika,57, No. 3, 657?660 (1970). · Zbl 0204.52601 · doi:10.1093/biomet/57.3.657
[102] P. Whittle, ?Continuous generalizations of Tchebichev’s inequality,? Teor. Veroyat. i Prim.,3, No. 4, 386?394 (1958).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.