×

zbMATH — the first resource for mathematics

Hardy space expectation operators and reducing subspaces. (English) Zbl 0296.47022

MSC:
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
46J15 Banach algebras of differentiable or analytic functions, \(H^p\)-spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arne Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 17. · Zbl 0033.37701 · doi:10.1007/BF02395019 · doi.org
[2] Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89 – 102. · Zbl 0116.32501 · doi:10.1007/978-1-4613-8208-9_19 · doi.org
[3] James A. Deddens and Tin Kin Wong, The commutant of analytic Toeplitz operators, Trans. Amer. Math. Soc. 184 (1973), 261 – 273. · Zbl 0273.47017
[4] Paul R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102 – 112. · Zbl 0107.09802 · doi:10.1515/crll.1961.208.102 · doi.org
[5] Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. · Zbl 0734.46033
[6] Michel Loève, Probability theory, 2nd ed. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-New York-London, 1960. · Zbl 0095.12201
[7] Eric A. Nordgren, Composition operators, Canad. J. Math. 20 (1968), 442 – 449. · Zbl 0161.34703 · doi:10.4153/CJM-1968-040-4 · doi.org
[8] Eric A. Nordgren, Reducing subspaces of analytic Toeplitz operators, Duke Math. J. 34 (1967), 175 – 181. · Zbl 0184.35202
[9] Gian-Carlo Rota, On the representation of aeraging operators, Rend. Sem. Mat. Univ. Padova 30 (1960), 52 – 64.
[10] John V. Ryff, Subordinate \?^\? functions, Duke Math. J. 33 (1966), 347 – 354. · Zbl 0148.30205
[11] T. P. Srinivasan and Ju-kwei Wang, Weak *-Dirichlet algebras, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp. 216 – 249. · Zbl 0191.13603
[12] Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, Translated from the French and revised, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. · Zbl 0201.45003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.