×

zbMATH — the first resource for mathematics

Subrings of idealizer rings. (English) Zbl 0297.16018

MSC:
16E10 Homological dimension in associative algebras
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
16Exx Homological methods in associative algebras
16P10 Finite rings and finite-dimensional associative algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cartan, H; Eilenberg, S, Homological algebra, (1956), Princeton University Press Princeton, New Jersey · Zbl 0075.24305
[2] Cateforis, V.C; Sandomierski, F.L, The singular submodule splits off, J. algebra, 10, 149-165, (1968) · Zbl 0176.31602
[3] Chase, S.U, Direct products of modules, Trans. amer. math. soc., 97, 457-473, (1960) · Zbl 0100.26602
[4] Cozzens, J.H, Homological properties of the ring of differential polynomials, Bull. amer. math. soc., 76, 75-79, (1970) · Zbl 0213.04501
[5] Fuelberth, J; Teply, M.L, A splitting ring of global dimension two, (), 317-324 · Zbl 0255.16013
[6] Goodearl, K.R, Singular torsion and the splitting properties, Mem. amer. math. soc., No. 124, (1972) · Zbl 0242.16018
[7] Goodearl, K.R, Idealizers and nonsingular rings, Pacific J. math., 48, 395-402, (1973) · Zbl 0248.16012
[8] Kolchin, E.R, Galois theory of differential fields, Amer. J. math., 75, 753-824, (1953) · Zbl 0052.27301
[9] Robson, J.C, Idealizers and hereditary Noetherian prime rings, J. algebra, 22, 45-81, (1972) · Zbl 0239.16003
[10] Robson, J.C, Idealizer rings, (), 309-317 · Zbl 0235.16021
[11] Sandomierski, F.L, Semisimple maximal quotient rings, Trans. amer. math. soc., 128, 112-120, (1967) · Zbl 0159.04303
[12] Sandomierski, F.L, Nonsingular rings, (), 225-230 · Zbl 0172.04702
[13] Silver, L, Noncommutative localizations and applications, J. algebra, 7, 44-76, (1967) · Zbl 0173.03305
[14] Teply, M.L, Homological dimension and splitting torsion theories, Pacific J. math., 34, 193-205, (1970) · Zbl 0197.31301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.