×

The extended Condorcet condition: a necessary and sufficient condition for the transitivity of majority decision. (English) Zbl 0297.92018


MSC:

91D99 Mathematical sociology (including anthropology)
91B06 Decision theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arrow K. J., Social Choice and Individual Values (1951) · Zbl 0984.91513
[2] DOI: 10.2307/1907278
[3] Black Duncan, The Theory of Committees and Elections (1958) · Zbl 0091.15706
[4] DOI: 10.1086/466667
[5] DOI: 10.1137/0122054 · Zbl 0246.90030
[6] Bowman V. J., Management Science Theory (1972)
[7] Bowman V. J., Working Paper, in: Transitive majority rule and the theorem of the alternative (1972)
[8] Bowman V. J., Working Paper 39–71–2, in: A linear programming formulation of a special quadratic assignment problem (1971)
[9] DOI: 10.2307/2229705
[10] Coombs C. H., Theory of Data (1964)
[11] Davis O. A., Econometrica (1972)
[12] Guilbaud G. T., Econome Applique S pp 501– (1952)
[13] Hinich M. J., Nonvoting and the existence of equilibrium under majority rule (1972)
[14] Inada K., Econometrica 32 pp 325– (1964)
[15] DOI: 10.2307/1912796 · Zbl 0188.24305
[16] Kramer G. H., Cowles Discussion Paper No. 284, in: On a class of equilibrium conditions for majority rules (1969)
[17] Luce R. D., Games and Decisions (1957) · Zbl 0084.15704
[18] DOI: 10.2307/1907651 · Zbl 0047.38402
[19] Nicholson M. B., Metroeconomica pp 42– (1965)
[20] Plott C., American Economic Review 57 pp 787– (1967)
[21] Plott C., Some recent results in the theory of voting (1970) · Zbl 0318.92029
[22] Riker W. H., American Political Science Review 5 pp 900– (1961)
[23] Riker W. H., Arrow’s theorem and some examples of the paradox of voting (1965)
[24] DOI: 10.2307/2296199
[25] DOI: 10.2307/1909947 · Zbl 0149.17003
[26] DOI: 10.1016/0022-0531(69)90020-9
[27] DOI: 10.2307/1880533
[28] DOI: 10.2307/1879585
[29] Ward B., The Public Economy of Urban Expenditures (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.