×

zbMATH — the first resource for mathematics

The existence of certain planar maps. (English) Zbl 0298.05112

MSC:
05C10 Planar graphs; geometric and topological aspects of graph theory
57M15 Relations of low-dimensional topology with graph theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brunel, G., Sur quelques configurations polyédrales, Prov. verb. séances soc. sci. phys. nat. Bordeaux, 20-22, (1897/98) · JFM 29.0422.01
[2] Brunel, G., Configurations spéciales tracées sur LES surfaces de genre 0, Proc. verb. séances soc. sci. phys. nat. Bordeaux, 2-4, (1899/1900)
[3] Eberhard, V., Zur morphologie der polyeder, (1891), Teubner Leipzig · JFM 23.0544.03
[4] Fisher, J.C., An existence theorem for simple convex polyhedra, Discrete math., 7, 75-97, (1974) · Zbl 0271.52008
[5] Gallai, T., Signierte zellenzerlegungen, Acta math. acad. sci. hungar., 22, 51-63, (1971) · Zbl 0222.05104
[6] Grinberg, E.J., Plane homogeneous graphs of degree three without Hamiltonian circuits, (), 51-58, (in Russian). · Zbl 0185.27901
[7] Grünbaum, B., Convex polytopes, (1967), Interscience London · Zbl 0163.16603
[8] Grünbaum, B., Some analogues of Eberhard’s theorem in convex polytopes, Israel J. math., 6, 398-411, (1968) · Zbl 0174.53702
[9] Grünbaum, B., Polytopes, graphs, and complexes, Bull. am. math. soc., 76, 1131-1201, (1970) · Zbl 0211.25001
[10] Grünbaum, B.; Motzkin, T.S., The number of hexagons and the simplicity of geodesics on certain polyhedra, Can. J. math., 15, 744-751, (1963) · Zbl 0121.37605
[11] Jucovič, E., On the face vector of a 4-valent 3-polytope, Stud. sci. math. hungar., 8, 53-57, (1973) · Zbl 0289.52003
[12] Lampe, E., Review of [1], Jahrbuch fortschritte math., 29, 422, (1898)
[13] Malkevitch, J., Properties of planar graphs with uniform vertex and face structure, () · Zbl 0196.27203
[14] Malkevitch, J., 3-valent 3-polytopes with faces having fewer than 7 edges, Ann. N.Y. acad. sci., 175, 285-286, (1970) · Zbl 0226.05105
[15] Motzkin, T.S., The evenness of the number of edges of a convex polyhedron, Proc. natl. acad. sci. U.S.A., 52, 44-45, (1964) · Zbl 0121.37606
[16] Nash-Williams, C.St.J.A., Possible directions in graph theory, (), 191
[17] Rowland, D.A., An extension of Eberhard’s theorem, ()
[18] Steinitz, E.; Rademacher, H., Vorlesungen über die theorie der polyeder, (1934), Springer Berlin · Zbl 0325.52001
[19] J. Zaks, 6-valent analogues of Eberhard’s theorem, to appear. · Zbl 0291.05102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.