×

Archimedean-like classes of lattice-ordered groups. (English) Zbl 0298.06022


MSC:

06F15 Ordered groups
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] R. Bleier, Dissertation, Tulane University, New Orleans, La., 1971.
[2] P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. · Zbl 0141.01002
[3] Paul Conrad, A characterization of lattice-ordered groups by their convex\?-subgroups, J. Austral. Math. Soc. 7 (1967), 145 – 159. · Zbl 0154.27001
[4] -, Lattice-ordered groups, Tulane University, New Orleans, La., 1970. · Zbl 0258.06011
[5] Paul Conrad and Donald McAlister, The completion of a lattice ordered group, J. Austral. Math. Soc. 9 (1969), 182 – 208. · Zbl 0172.31601
[6] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. · Zbl 0137.02001
[7] Jorge Martinez, Free products of abelian \?-groups, Czechoslovak Math. J. 23(98) (1973), 349 – 361. · Zbl 0298.06023
[8] Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. · Zbl 0251.20001
[9] Elliot Carl Weinberg, Free lattice-ordered abelian groups, Math. Ann. 151 (1963), 187 – 199. · Zbl 0114.25801
[10] Samuel Wolfenstein, Valeurs normales dans un groupe réticulé, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 44 (1968), 337 – 342 (French, with Italian summary). · Zbl 0174.06003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.