×

zbMATH — the first resource for mathematics

A maximal coupling for Markov chains. (English) Zbl 0301.60043

MSC:
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Blackwell, D., Freedman, D.: The tail ?-field of a Markov chain and a theorem of Orey. Ann. Math. Statist. 35, 1291-1295 (1964) · Zbl 0127.35204 · doi:10.1214/aoms/1177703284
[2] Chung, K. L.: A course in Probability Theory. 2nd ed. New York: Academic Press 1974 · Zbl 0345.60003
[3] Dobrushin, R. L.: Markov processes with a large number of locally interacting components. Problemy Pereda?i. Informacii 7, 70-87 (1971)
[4] Doeblin, W.: Expose de la theorie des chaÎnes simples constantes de Markov à un nombre fini d’états. Rev. Math. de l’Union Interbalkanique 2, 77-105 (1937)
[5] Freedman, D.: Markov Chains. San Francisco: Holden Day 1971 · Zbl 0212.49801
[6] Griffeath, D.: Coupling methods for nonhomogeneous Markov chains. To appear · Zbl 0301.60043
[7] Harris, T.E.: Contact interactions on a lattice. Ann. Probab. 2, 969-988 (1974) · Zbl 0334.60052 · doi:10.1214/aop/1176996493
[8] Orey, S.: An ergodic theorem for Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 1, 174-176 (1962) · Zbl 0109.36302 · doi:10.1007/BF01844420
[9] Orey, S.: Limit Theorems for Markov Chain Transition Probabilities. London: Van Nostrand 1971 · Zbl 0295.60054
[10] Ornstein, D.: Random Walk I. T.A.M.S. 138, 1-43 (1969) · Zbl 0181.44501 · doi:10.1090/S0002-9947-1969-0238399-9
[11] Pitman, J. W.: Uniform rates of convergence for Markov chain transition probabilities. Z. Wahrscheinlichkeitstheorie verw. Gebiete 29, 193-227 (1974) · Zbl 0373.60077 · doi:10.1007/BF00536280
[12] Vasershtein, L. N.: Markov processes on countable product spaces describing large systems of automata. Problemy Pereda?i Informacii 3, 64-72 (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.