zbMATH — the first resource for mathematics

Real hypersurfaces in complex manifolds. (English) Zbl 0302.32015

32C99 Analytic spaces
32M05 Complex Lie groups, group actions on complex spaces
32Q99 Complex manifolds
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C10 \(G\)-structures
53C55 Global differential geometry of Hermitian and Kählerian manifolds
Full Text: DOI
[1] Cartan, E., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I.Ann. Math. Pura Appl., (4) 11 (1932), 17–90 (orOeuvres II, 2, 1931–1304); II,Ann. Scuola Norm. Sup. Pisa, (2) 1 (1932) 333–354 (orOeuvres III, 2, 1217–1238). · Zbl 0005.37304
[2] Fefferman, C., The Bergman Kernel and Biholomorphic Mappings of Pseudoconvex DomainsInvent. Math., 26 (1974), 1–65. · Zbl 0289.32012 · doi:10.1007/BF01406845
[3] Hopf, H., Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche.Math. Ann., 104, 1931, 637–665, § 5. · JFM 57.0725.01 · doi:10.1007/BF01457962
[4] Moser, J., Holomorphic equivalence and normal forms of hypersurfaces. To appear inProc. Symp. in Pure Math., Amer. Math. Soc.
[5] Nirenberg, L.,Lectures on linear partial differential equations. Regional Conf. Series in Math., No. 17 Amer. Math. Soc. 1973. · Zbl 0267.35001
[6] Poincaré, H., Les fonctions analytiques de deux variables et la représentation conforme.Rend. Circ. Mat. Palermo (1907), 185–220. · JFM 38.0459.02
[7] Tanaka, N., I. On the pseudo-conformal geometry of hypersurfaces of the space ofn complex variables.J. Math. Soc. Japan, 14 (1962), 397–429; II. Graded Lie algebras and geometric structures,Proc. US-Japan Seminar in Differential Geometry, 1965, 147–150. · Zbl 0113.06303 · doi:10.2969/jmsj/01440397
[8] Wells, R. O., Function theory on differentiable submanifolds.Contributions to Analysis, Academic Press, 1974, 407–441.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.