Almost periodic states and factors of type III\(_1\). (English) Zbl 0302.46050


46L10 General theory of von Neumann algebras
Full Text: DOI


[1] {\scH. Araki}, Some properties of modular conjugation operator and a noncommutative Radon Nikodym theorem with chain rule. Preprint RIMS. · Zbl 0287.46074
[2] Combes, F., Poids et espérances conditionnelles dans LES algèbres de von Neumann, Bull. soc. math. fr., 99, 73-112, (1971) · Zbl 0208.38202
[3] Connes, A., États presque périodiques sur LES algèbres de von Neumann, C. R. acad. sc., 274, 1402-1405, (1972), série A · Zbl 0235.46094
[4] Connes, A., Une classification des facteurs de type III, Ann. scient. école normale supérieure, 6, (1973), fasc. 2 · Zbl 0274.46050
[5] {\scA. Connes}, Almost periodic states and Krieger’s factors (Preprint).
[6] Dixmier, J., Dual et quasi-dual d’une algèbre de Banach involutive, Trans. am. math. soc., 104, 278-283, (1962) · Zbl 0112.07302
[7] Duff, Mc., Central sequences and the hyperfinite factor, (), 443-461
[8] {\scH. Haaguerup}, The standard form of von Neumann algebras, Preprint, Copenhague No. 15.
[9] Krieger, W., On non singular transformations of a measure space II, Z. wahrscheinlichkeitstheorie verw. geb., 11, 98-119, (1969) · Zbl 0185.11901
[10] Moore, C., Extensions and low dimensional cohomology theory for locally compact groups, Trans. am. math. soc., 113, 40-86, (1964) · Zbl 0131.26902
[11] {\scJ. von Neumann}, Characterization of factors of type II_{1}, collected Works No. III, p. 566.
[12] {\scS. Sakai}, \(C\^{}\{∗\}\) and \(W\^{}\{∗\}\) algebras, Ergebnisse der Mathematik und iher grengebiete Band 60.
[13] {\scM. Takesaki}, Duality in cross products and the structure of von Neumann algebras of type III. (Preprint) · Zbl 0268.46058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.