zbMATH — the first resource for mathematics

An extension of Schensted’s theorem. (English) Zbl 0303.05006

05A10 Factorials, binomial coefficients, combinatorial functions
05A15 Exact enumeration problems, generating functions
05A05 Permutations, words, matrices
05B15 Orthogonal arrays, Latin squares, Room squares
05A17 Combinatorial aspects of partitions of integers
Full Text: DOI
[1] Berge, C, Introduction to combinatorics, (1971), Academic Press New York · Zbl 0227.05002
[2] Dilworth, R.P, A decomposition theorem for partially ordered sets, Ann. of math., 51, 161, (1950) · Zbl 0038.02003
[3] \scC. Greene and D. J. Kleitman, The structure of Sperner k-families, Advances in Math., to appear. · Zbl 0361.05016
[4] \scD. E. Knuth, “The Art of Computer Programming”, Vol. III, Addison Wesley. · Zbl 0191.17903
[5] Knuth, D.E, Permutations, matrices, and generalized Young tableaux, Pacific J. math., 34, 709, (1970) · Zbl 0199.31901
[6] Littlewood, D.E, The theory of group characters, (1940), Oxford · Zbl 0011.25001
[7] de B. Robinson, G; de B. Robinson, G; de B. Robinson, G, On the representations of the symmetric group, Amer. J. math., Amer. J. math., Amer. J. math., 70, 277-294, (1948) · Zbl 0036.15501
[8] Schensted, C, Longest increasing and decreasing subsequences, Canad. J. math., 13, 179-191, (1961) · Zbl 0097.25202
[9] Schützenberger, M.P, Quelques remarques sur une construction de Schensted, Math. scand., 12, 117-128, (1963) · Zbl 0216.30202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.