Greene, Curtis An extension of Schensted’s theorem. (English) Zbl 0303.05006 Adv. Math. 14, 254-265 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 ReviewsCited in 68 Documents MSC: 05A10 Factorials, binomial coefficients, combinatorial functions 05A15 Exact enumeration problems, generating functions 05A05 Permutations, words, matrices 05B15 Orthogonal arrays, Latin squares, Room squares 05A17 Combinatorial aspects of partitions of integers MathOverflow Questions: Unimodality of length of longest increasing subsequence PDF BibTeX XML Cite \textit{C. Greene}, Adv. Math. 14, 254--265 (1974; Zbl 0303.05006) Full Text: DOI References: [1] Berge, C, Introduction to combinatorics, (1971), Academic Press New York · Zbl 0227.05002 [2] Dilworth, R.P, A decomposition theorem for partially ordered sets, Ann. of math., 51, 161, (1950) · Zbl 0038.02003 [3] \scC. Greene and D. J. Kleitman, The structure of Sperner k-families, Advances in Math., to appear. · Zbl 0361.05016 [4] \scD. E. Knuth, “The Art of Computer Programming”, Vol. III, Addison Wesley. · Zbl 0191.17903 [5] Knuth, D.E, Permutations, matrices, and generalized Young tableaux, Pacific J. math., 34, 709, (1970) · Zbl 0199.31901 [6] Littlewood, D.E, The theory of group characters, (1940), Oxford · Zbl 0011.25001 [7] de B. Robinson, G; de B. Robinson, G; de B. Robinson, G, On the representations of the symmetric group, Amer. J. math., Amer. J. math., Amer. J. math., 70, 277-294, (1948) · Zbl 0036.15501 [8] Schensted, C, Longest increasing and decreasing subsequences, Canad. J. math., 13, 179-191, (1961) · Zbl 0097.25202 [9] Schützenberger, M.P, Quelques remarques sur une construction de Schensted, Math. scand., 12, 117-128, (1963) · Zbl 0216.30202 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.