zbMATH — the first resource for mathematics

A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. (English. Russian original) Zbl 0303.35024
Funct. Anal. Appl. 8, 226-235 (1974); translation from Funkts. Anal. Prilozh. 8, No. 3, 43-53 (1974).

35G20 Nonlinear higher-order PDEs
35P25 Scattering theory for PDEs
35A22 Transform methods (e.g., integral transforms) applied to PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
Full Text: DOI
[1] C. S. Gardner, J. M. Green, M. Kruskal, and R. M. Miura, ”Method for solving the Korteweg?de Vries equation,” Phys. Rev. Lett.,19, 1095-1097 (1967). · Zbl 1103.35360
[2] P. D. Lax, ”Integrals of nonlinear equations of evolution and solitary waves,” Comm. Pure Appl. Math.,21, 467-490 (1968). · Zbl 0162.41103
[3] V. E. Zakharov and A. B. Shabat, ”A refined theory of two-dimensional self-focussing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Éksp. Teor. Fiz.,61, No. 1, 118-134 (1971).
[4] V. E. Zakharov and A. B. Shabat, ”On the interaction of solitons in a stable medium,” Zh. Éksp. Teor. Fiz.,64, No. 5, 1627-1639 (1973).
[5] V. E. Zakharov, ”The method of the inverse scattering problem,” in: Theory of Elastic Media with Microstructure, edited by I. A. Kukin [in Russian], Nauka, Moscow (1974). · Zbl 0303.35024
[6] A. B. Shabat, ”Concerning the Korteweg?de Vries equation,” Dokl. Akad. Nauk SSSR,211, No. 6, 1310-1313 (1973). · Zbl 0289.35069
[7] V. E. Zakharov, ”On the problem of one-dimensional stochastized circuits of nonlinear oscillators,” Zh. Éksp. Teor. Fiz.,65, No. 1, 219-225 (1973).
[8] B. B. Kadomtsev and V. I. Petviashvili, ”On the stability of solitary waves in weakly dispersive media,” Dokl. Akad. Nauk SSSR,192, No. 4, 753-756 (1970). · Zbl 0217.25004
[9] M. Wadati and M. Toda, ”Exact N-soliton solution of the Korteweg?de Vries equation,” J. Phys. Soc. Japan,36, 1403-1412 (1972).
[10] V. E. Zakharov and S. V. Manakov, ”On resonance interaction of wave packets in nonlinear media,” ZhÉTF Pis. Red.,18, No. 7, 413 (1973).
[11] N. Bloembergen, Nonlinear Optics, W. A. Benjamin (1965).
[12] V. E. Zakharov, L. A. Takhtadzhyan, and L. D. Faddeev, ”Complete description of the solutions of the ?sin?gordon? equation,” Dokl. Akad. Nauk SSSR (1974). · Zbl 0312.35051
[13] S. V. Manakov, ”On a theory of the two-dimensional stationary self-focussing electromagnetic waves,” Zh. Éksp. Teor. Fiz.,65, 505-516 (1973).
[14] M. Wadati, ”The modified Korteweg?de Vries equation,” J. Phys. Soc. Japan,34, No. 5, 1289-1291 (1973). · Zbl 1334.35299
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.