×

zbMATH — the first resource for mathematics

Conditions for the absolute continuity of two diffusions. (English) Zbl 0303.60071

MSC:
60J60 Diffusion processes
60G30 Continuity and singularity of induced measures
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Leo Breiman, Probability, Addison-Wesley Publishing Company, Reading, Mass.-London-Don Mills, Ont., 1968. · Zbl 0174.48801
[2] Марковские процессы, Государств. Издат. Физ.-Мат. Лит., Мосцощ, 1963 (Руссиан). · Zbl 0132.37701
[3] William Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. (2) 55 (1952), 468 – 519. · Zbl 0047.09303 · doi:10.2307/1969644 · doi.org
[4] David Freedman, Brownian motion and diffusion, Holden-Day, San Francisco, Calif.-Cambridge-Amsterdam, 1971. · Zbl 0231.60072
[5] I. V. Girsanov, On transforming a class of stochastic processes by absolutely continuous substitution of measures, Teor. Verojatnost. i Primenen. 5 (1960), 314 – 330 (Russian, with English summary).
[6] Masuyuki Hitsuda, Representation of Gaussian processes equivalent to Wiener process, Osaka J. Math. 5 (1968), 299 – 312. · Zbl 0174.49302
[7] Kiyoshi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Die Grundlehren der Mathematischen Wissenschaften, Band 125, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-New York, 1965.
[8] T. T. Kadota and L. A. Shepp, Conditions for absolute continuity between a certain pair of probability measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 16 (1970), 250 – 260. · Zbl 0193.44501 · doi:10.1007/BF00534599 · doi.org
[9] Thomas Kailath, The structure of Radon-Nikodým derivatives with respect to Wiener and related measures, Ann. Math. Statist. 42 (1971), 1054 – 1067. · Zbl 0246.60041 · doi:10.1214/aoms/1177693332 · doi.org
[10] Thomas Kailath and Moshe Zakai, Absolute continuity and Radon-Nikodym derivatives for certain measures relative to Wiener measure, Ann. Math. Statist. 42 (1971), 130 – 140. · Zbl 0226.60061 · doi:10.1214/aoms/1177693500 · doi.org
[11] Hiroshi Kunita and Shinzo Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209 – 245. · Zbl 0167.46602
[12] P.-A. Meyer, Intégrales stochastiques. I, II, III, IV, Séminaire de Probabilités (Univ. Strasbourg, Strasbourg, 1966/67) Springer, Berlin, 1967, pp. 72 – 94, 95 – 117, 118 – 141, 142 – 162 (French).
[13] Hiroshi Tanaka, Note on continuous additive functionals of the 1-dimensional Brownian path, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/1963), 251 – 257. · Zbl 0129.30701 · doi:10.1007/BF00532497 · doi.org
[14] H. F. Trotter, A property of Brownian motion paths, Illinois J. Math. 2 (1958), 425 – 433. · Zbl 0117.35502
[15] A. D. Ventcel\(^{\prime}\), On continuous additive functionals of a multidimensional Wiener process, Dokl. Akad. Nauk SSSR 142 (1962), 1223 – 1226 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.