×

zbMATH — the first resource for mathematics

BERNOULLI EQUILIBRIUM STATES FOR AXIOM A diffeomorphisms. (English) Zbl 0304.28012

MSC:
28D05 Measure-preserving transformations
37D99 Dynamical systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Bowen, Markov partitions for Axiom A diffeomorphisms,Amer. J. Math. 92 (1970), 725–747. · Zbl 0208.25901 · doi:10.2307/2373370
[2] R. Bowen, Some systems with unique equilibrium states,Math. Systems Theory, to appear. · Zbl 0299.54031
[3] N. Friedman andD. Ornstein, On the isomorphism of weak Bernoulli transformations,Advances in Math. 5 (1970), 365–394. · Zbl 0203.05801 · doi:10.1016/0001-8708(70)90010-1
[4] G. Gallavotti, Ising model and Bernoulli schemes in one dimension,Commun. Math. Phys., to appear. · Zbl 0262.60061
[5] D. Ruelle, Statistical mechanics of a one-dimensional lattice gas,Commun. Math. Phys. 9 (1968), 267–278. · Zbl 0165.29102 · doi:10.1007/BF01654281
[6] D. Ruelle, Statistical mechanics on a compact set withZ v action satisfying expensiveness and specification, preprint.
[7] Ya. G. Sinai, Gibbsian measures in ergodic theory,Russian Math. Surveys 4 (166), 1972, 21–64. · Zbl 0246.28008 · doi:10.1070/RM1972v027n04ABEH001383
[8] S. Smale, Differentiable dynamical systems,Bull. Amer. Math. Soc. 73 (1967), 747–817. · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[9] R. Azencott, Difféomorphisms d’Anosov et schémas de Bernoulli,C.R. Acad. Sci. Paris Ser. A-B 270 (1970), A1105-A1107. · Zbl 0214.15902
[10] Ya. G. Sinai, Markov partitions and C-diffeomorphisms,Functional Analysis and its Applications 2 (1968), 64–89. · Zbl 0182.55003 · doi:10.1007/BF01075361
[11] L. W. Goodwyn, Comparing topological entropy with measure-theoretic entropy,Amer. J. Math. 94 (1972), 366–388. · Zbl 0249.54021 · doi:10.2307/2374626
[12] M. Ratner, Anosov flows with Gibbs measures are also Bernoullian,Israel J. Math., to appear. · Zbl 0304.28011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.