Sur l’élément de Clough et Tocher. (French) Zbl 0306.65070


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Z05 Applications to the sciences
74S05 Finite element methods applied to problems in solid mechanics
Full Text: EuDML


[1] CIARLET P. G., Conforming and nonconforming finite element methods for solving the plate problem, à paraître dans les comptes rendus de la Conference onthe Numerical Solution of Differential Equations, Université de Dundee, 3-6 juill 1973. Zbl0285.65072 MR423832 · Zbl 0285.65072
[2] QARLET P. G., Quelques méthodes d’éléments finis pour le problème d’une plaque encastrée, à paraître dans les comptes rendus du Colloque International surles Méthodes de Calcul Scientifique et Technique, I.R.I.A., LeChesnay, 17-21 décemb 1973.
[3] CIARLET P. G. et RAVIART P.-A., General Lagrange and Hermite interpolationin Rn with applications to finite element methods. Arch. Rational Mech. Anal., 46 (1972), 177-199. Zbl0243.41004 MR336957 · Zbl 0243.41004
[4] [4] CIARLET P. G. et WAGSCHAL C., Multipoint Taylor formulas and applications tothe finite element method, Numer. Math., 17, (1971), 84-100. Zbl0199.50104 MR287666 · Zbl 0199.50104
[5] CLOUGH R. W. et TOCHER J. L., Finite element stiffness matrices for analysis of plates in bending, Conference on Matrix Methods in Structural Mechanics,Wright Patterson A.F.B., Ohio, 1965.
[6] RAVIART P.-A., Méthode des Eléments Finis, Université de Paris VI, Paris, 1972. od in Engineering Science, McGraw-
[7] ZIENKIEWICZ O. C., The Finite Element Method in Engineering Science, , McGraw-Hill, London, 1971. Zbl0237.73071 MR315970 · Zbl 0237.73071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.