×

On the osculatory rational interpolation problem. (English) Zbl 0307.65014


MSC:

65D05 Numerical interpolation
41A05 Interpolation in approximation theory
41A20 Approximation by rational functions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] S. W. Kahng, Osculatory interpolation, Math. Comp. 23 (1969), 621 – 629. · Zbl 0182.49501
[2] L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan and Co., Ltd., London, 1951. · JFM 59.1111.01
[3] Herbert E. Salzer, Note on osculatory rational interpolation, Math. Comp. 16 (1962), 486 – 491. · Zbl 0178.51505
[4] T. P. Angelitch, G. Aumann, F. L. Bauer, R. Bulirsch, H. P. Künzi, H. Rutishauser, K. Samelson, R. Sauer, and J. Stoer, Mathematische Hilfsmittel des Ingenieurs. Teil III, Herausgegeben von R. Sauer und I. Szabó. Unter Mitwirkung von H. Neuber, W. Nürnberg, K. Pöschl, E. Truckenbrodt und W. Zander. Die Grundlehren der mathematischen Wissenschaften, Band 141, Springer-Verlag, Berlin-New York, 1968 (German).
[5] H. C. THACHER, JR., ”A recursive procedure for osculatory interpolation by rational functions.” (Unpublished manuscript.)
[6] Luc Wuytack, An algorithm for rational interpolation similar to the \?\?-algorithm, Numer. Math. 20 (1972/73), 418 – 424. · Zbl 0261.65006
[7] Luc Wuytack, On some aspects of the rational interpolation problem, SIAM J. Numer. Anal. 11 (1974), 52 – 60. · Zbl 0241.65008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.