×

zbMATH — the first resource for mathematics

Zero-one laws for non-Gaussian measures. (English) Zbl 0309.60022

MSC:
60F20 Zero-one laws
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. H. Cameron and Ross E. Graves, Additive functionals on a space of continuous functions. I, Trans. Amer. Math. Soc. 70 (1951), 160 – 176. · Zbl 0042.11702
[2] Naresh C. Jain, A zero-one law for Gaussian processes, Proc. Amer. Math. Soc. 29 (1971), 585 – 587. · Zbl 0271.60006
[3] Naresh C. Jain and G. Kallianpur, Norm convergent expansions for Gaussian processes in Banach spaces., Proc. Amer. Math. Soc. 25 (1970), 890 – 895. · Zbl 0209.48604
[4] B. Jamison and S. Orey, Subgroups of sequences and paths, Proc. Amer. Math. Soc. 24 (1970), 739 – 744. · Zbl 0254.60024
[5] G. Kallianpur, Abstract Wiener processes and their reproducing kernel Hilbert spaces., Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 113 – 123. · Zbl 0194.49003
[6] G. Kallianpur, Zero-one laws for Gaussian processes, Trans. Amer. Math. Soc. 149 (1970), 199 – 211. · Zbl 0234.60032
[7] J. Kuelbs, Expansions of vectors in a Banach space related to Gaussian measures., Proc. Amer. Math. Soc. 27 (1971), 364 – 370. · Zbl 0226.60060
[8] J. Kuelbs, Gaussian measures on a Banach space, J. Functional Analysis 5 (1970), 354 – 367. · Zbl 0194.44703
[9] A. V. Skorohod, Admissible shifts of measures in Hilbert space, Teor. Verojatnost. i Primenen. 15 (1970), 577 – 598 (Russian, with English summary).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.