×

zbMATH — the first resource for mathematics

Foliations with all leaves compact. (English) Zbl 0313.57017

MSC:
57R30 Foliations in differential topology; geometric theory
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] C. EHRESMANN, LES connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie, Bruxelles (1950), 29-55. · Zbl 0054.07201
[2] D.B.A. EPSTEIN, Periodic flows on 3-manifolds, Annals of Math., 95 (1972), 68-82. · Zbl 0231.58009
[3] A. HAEFLIGER, Variétés feuilletées, Ann. Scuola Normale Sup. Pisa, 16 (1962), 367-397. · Zbl 0122.40702
[4] A. HAEFLIGER, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comm. Math. Helv., 32 (1958), 248-329. · Zbl 0085.17303
[5] D. MONTGOMERY and L. ZIPPIN, Topological transformation groups, Inter-Science, New York (1955). · Zbl 0068.01904
[6] R.S. PALAIS, C1 -actions of compact Lie groups on compact manifolds are C1 -equivalent to C∞ -actions, Am. Jour. of Math., 92 (1970) 748-760. · Zbl 0203.26203
[7] A.W. WADSLEY, Ph. D. THESIS, University of warwick1974.
[8] A.W. WADSLEY, Geodesic foliations by circles, (available from University of Warwick). · Zbl 0336.57019
[9] A. DRESS, Newman’s theorems on transformation groups, Topology, 8 (1969) 203-207. · Zbl 0176.53201
[10] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Act. Sci. et Ind. N° 1183, Hermann, Paris (1952). · Zbl 0049.12602
[11] R.H. BING, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Annals of Math, 56 (1952), 354-362. · Zbl 0049.40401
[12] R.D. EDWARDS, K.C. MILLET and D. SULLIVAN, Foliations with all leaves compact, (to appear). · Zbl 0356.57022
[13] K.C. MILLETT, Compact foliations, Springer-Verlag Lecture Notes 484, Differential Topology and Geometry Conference in Dijon 1974. · Zbl 0313.57018
[14] J. DUGUNDJI, Topology, Allyn and Bacon (1970). · Zbl 0144.21501
[15] D. SULLIVAN, A counterexample to the periodic orbit conjecture, (I.H.E.S. preprint, 1975). · Zbl 0372.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.