×

zbMATH — the first resource for mathematics

The elementary theory of algebraic fields of finite corank. (English) Zbl 0315.12107

MSC:
12L05 Decidability and field theory
11R99 Algebraic number theory: global fields
12L10 Ultraproducts and field theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ax, J.: Solving diophantine problems modulo every prime. Annals of Math.85, 161-183 (1967) · Zbl 0239.10032
[2] Ax, J.: The elementary theory of finite fields. Annals of Math.88, 239-271 (1968) · Zbl 0195.05701
[3] Bell, J.L., Slomson, A.B.: Models and ultraproducts. Amsterdam: North-Holland 1969 · Zbl 0179.31402
[4] Gaschütz, W.: Zu einem von B.H. und H. Neumann gestellten Problem. Math. Nachrichten14, 249-252 (1956) · Zbl 0071.25202
[5] Halmos, P.R.: Measure theory. Princeton: Van Nostand 1950 · Zbl 0040.16802
[6] Jarden, M.: Elementary statements over large algebraic fields. Trans. of A.M.S.164, 67-91 (1972) · Zbl 0235.12104
[7] Jarden, M.: Algebraic extensions of hilbertian fields of finite corank. Israel J. of Math.18, 279-307 (1974) · Zbl 0293.12101
[8] Kreisel, G., Krivine, J.L.: Elements of mathematical logic. Amsterdam: North-Holland 1967 · Zbl 0155.33801
[9] Lang, S.: Introduction to algebraic geometry. New York: Interscience Publishers 1958 · Zbl 0095.15301
[10] Lang, S.: Diophantine geometry. New York: Interscience Publishers 1962 · Zbl 0115.38701
[11] Mendelson, E.: Introduction to mathematical logic. Princeton: Van Nostrand 1964 · Zbl 0123.29302
[12] Ribes, L.: Introduction to profinite groups and Galois cohomology. Queen papers in pure and applied Math.24, Kingston 1970 · Zbl 0221.12013
[13] Van der Waerden, B.L.: Moderne Algebra I. Berlin-Heidelberg-New York: Springer 1940 · Zbl 0022.29801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.